Tesis Validadas: 2,591

Tesis de Posgrado: 3,262

Visitas: 1,329

Utilize este identificador para referenciar este registo: https://rinacional.tecnm.mx/jspui/handle/TecNM/3013
Título: Predicción de la Capacidad de Generación para Un Sistema Fotovoltaico
Autor: Corona Morales, Cristian Alexis%956221
metadata.dc.subject.other: sistemas fotovoltaicos, redes neuronales artificiales, panel solar, convertidor tipo boost
Data: 2022-02-24
Editora: Tecnológico Nacional de México
metadata.dc.publisher.tecnm: Centro Nacional de Investigación y Desarrollo Tecnológico
Descrição: Los sistemas fotovoltaicos son una fuente de generación con mayor accesibilidad, ya que su recurso primario es el sol y su instalación es generalmente sencilla; Sin embargo, conlleva ciertos factores que intervienen en el proceso y afectan considerablemente la producción. El factor más influyente son las condiciones climáticas, que a su vez también son afectadas por las estaciones del año. Uno de los factores que afectan directamente a la generación de energía a partir de sistemas fotovoltaicos son los cúmulos de nubosidad presentes a lo largo del día ya que estos intervienen de forma significativa entre la radiación y las celdas eléctricas obstruyendo de diversas formas el proceso de producción de energía. Esta tesis busca predecir la capacidad de generación de energía fotovoltaica a partir de muestras reales y modelos matemáticos, para ello se hace uso de redes neuronales artificiales. Este método híbrido puede ser dividido en tres etapas, la primera, adquisición de datos de nubosidad de una zona seleccionada, en esta etapa se extraen imágenes satelitales del estado de nubosidad para después ser analizadas en escala de grises y proporcionar información a una primera red neuronal artificial, en la segunda etapa se realiza una predicción teórica de la irradiación solar sobre una superficie horizontal, estos datos no contienen elementos de nubosidad, por ello junto con los datos obtenidos de nubosidad y agregando la hora del día a cada dato son ingresados a una segunda red neuronal para poder realizar una predicción de irradiación solar sobre una superficie horizontal tomando en cuenta la nubosidad presente, finalmente en la tercera etapa se realizan el comportamiento de los datos predecidos, haciendo uso de modelos matemáticos se obtiene la irradiación solar sobre una superficie inclinada, esta última obtenida de los datos predecidos, posteriormente los datos son ingresados a un modelo matemático de panel solar y finalmente a un convertidor tipo boost, obteniendo así la energía generada en los próximos lapsos de tiempo.
metadata.dc.type: info:eu-repo/semantics/masterThesis
Aparece nas colecções:Tesis de Maestría en Ingeniería Electrónica

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
ME_Cristian_Alexis_Corona_Morales_2022.pdfTesis6.64 MBAdobe PDFVer/Abrir
ME_Cristian_Alexis_Corona_Morales_22_c.pdf
  Restricted Access
Cesión de derechos193.34 kBAdobe PDFVer/Abrir Request a copy


Este registo está protegido por copyright original.



Este registo está protegido por Licença Creative Commons Creative Commons