Tesis Validadas: 2,591

Tesis de Posgrado: 3,262

Visitas: 1,066

Please use this identifier to cite or link to this item: https://rinacional.tecnm.mx/jspui/handle/TecNM/6602
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSalcedo Garduño, Magnolia%367396-
dc.contributor.authorPeña Dorantes, Luis Antonio%997663-
dc.creatorPeña Dorantes, Luis Antonio%997663-
dc.date.accessioned2023-11-22T21:42:09Z-
dc.date.available2023-11-22T21:42:09Z-
dc.date.issued2022-05-09-
dc.identifier.urihttps://rinacional.tecnm.mx/jspui/handle/TecNM/6602-
dc.descriptionEl manglar de la Reserva Natural Estatal Arroyo Moreno tiene gran importancia ecológica, debido a su función como barrera de protección y contención contra el efecto de tormentas y huracanes, además de ser refugio de flora y fauna silvestre, entre otros. La cuenca del rio Jamapa está ubicada entre la Reserva Natural Estatal Arroyo Moreno y el fraccionamiento Puente Moreno. Se ha identificado un problema de contaminación del cuerpo de agua, a causa de la descarga de aguas residuales sin tratamiento previo que altera la calidad del afluente. El aspecto accidentado de la ribera del arroyo dificulta su recorrido y representa un inconveniente para identificar visualmente las fuentes puntuales de contaminación (FPC). Por lo cual, el objetivo de este trabajo de investigación fue identificar las FPC en Arroyo Moreno empleando Inteligencia Artificial (IA). Se utilizó un vehículo aéreo no tripulado para tomar fotografías aéreas y el entrenamiento de la IA se realizó con 160 imágenes utilizando el software IBM® Watson. Las 15 FPC fueron ubicadas y representadas mediante el Sistema de Información Geográfica ArGis 10.3. Esta información servirá como base en la aplicación de la IA en la planeación estratégica y toma de decisiones a favor de la sustentabilidad ambiental. Palabras claves: Arroyo Moreno, fuentes puntuales de contaminación, inteligencia Artificiales_MX
dc.language.isospaes_MX
dc.publisherTecnológico Nacional de Méxicoes_MX
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.subjectinfo:eu-repo/classification/cti/2es_MX
dc.subject.otherArroyo Moreno, fuentes puntuales de contaminación, inteligencia Artificiales_MX
dc.title“INTELIGENCIA ARTIFICIAL PARA LA IDENTIFICACIÓN DE FUENTES PUNTUALES DE CONTAMINACIÓN EN ARROYO MORENO, VERACRUZ”es_MX
dc.typeinfo:eu-repo/semantics/masterThesises_MX
dc.contributor.directorGarcía Saldaña, Arturo%485883-
dc.contributor.directorGalaviz Villa, Itzel%216557-
dc.folioA01006-070120es_MX
dc.rights.accessinfo:eu-repo/semantics/openAccesses_MX
dc.publisher.tecnmInstituto Tecnológico de Boca del Rioes_MX
Appears in Collections:Maestría en Ciencias en Ingeniería Ambiental

Files in This Item:
File Description SizeFormat 
PeñaDorantesLuisAntonio-2022.pdf11.78 MBAdobe PDFView/Open
CARTA Peña-Dorantes.pdf
  Restricted Access
716.84 kBAdobe PDFView/Open Request a copy


This item is protected by original copyright



This item is licensed under a Creative Commons License Creative Commons