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Root mean square error of cross validation (RMSECV) 

Root mean squared error (RMSE) 

Root mean squared error of prediction (RMSEP) 

Spectra truncation (ST) 

Standard error of cross-validation (SECV) 

Standard error of prediction (SEP) 

Standard Normal Variate (SNV) 

Support Vector (SV) 

Support Vector Regression (SVR) 
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U.S. Food and Drug Administration (FDA) 

VCD (Viable cell Density) 

Vinblastine (VB) 

Vincristine (VC) 

Wavelength (λ) 
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Nomenclature / Nomenclatura 
 

A Absorbance 

 Incident light 

 Transmitted light 

 Molar attenuation coefficient or absorptivity 

 Concentration of the attenuating species 

 Optical path length 

 k-th regressor in-linear regression methods 

 k-th indetermined variable related to spectra in-linear regression methods 

 Estimated or predicted concentration value by models for the i-th sample 

 Actual concentration value for the i-th sample 

 Mean concentration value in calibration analysis  

 Number of calibration or prediction samples 

 Matrix of spectra 

T Scores matrix (for PCR) or pseudo-score matrix (for PLSR) 

P Matrix of loadings (for PCR) or matrix of pseudo-loadings (for [X] in 

PLSR) 

[E], E or [F] Error matrices in-linear models 

 Matrix of off-line concentration values 

B Regressor matrix for linear models 

U Pseudo-score matrix 

Q Matrix of pseudo-loadings for [Y] in PLSR 

 
i-th weight for the calibration sample j in LWR models 

 
Distance between prediction sample j and calibration sample i in LWR 

 
Maximum distance involved in each regression in LWR 

 Distance function for LWR2 models 

 Distance in the chemical space for LWR2 models 

 Distance in the spectral-related space for LWR2 models 

±ε SVR threshold or precision 

 Hyperplane for SVR models 
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 Intuitive regressor for SVR model 

 Error for intuitive SVR model 

 Slack variables for soft margin 

 Feature space of SVR model 

 Input for ANN 

 Weight of neuron i  

 Bias value for neuron i 

 Transfer function for neuron i 

 Neuron output 

Yx/s Yield of cell dry weight per total sugar consumed (g.g-1) 
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ABSTRACT 

 

The complexity of biopharmaceutical products implies that their approval is based on a 

specific process. Any further change, especially in the process, requires drug validation in 

terms of clinical effects and biosecurity.  Because changes in the processes may be 

unavoidable, quality assurance by inspection at the end of the process (Quality by Testing-

QbT) tends to be replaced by a new quality perspective called Quality by design (QbD) which 

builds drug Critical Quality Attributes (CQA) controlling key Critical Process Parameters 

(CPP) in real-time. However, QbD implementation has been limited by the complexity of 

cell culture processes and the need for multivariate methods that allow the use of complex 

signals from process analyzers as monitoring instruments.  

Consequently, the objective of this work has been to develop new methodological and 

experimental applications, based on in situ NIR spectroscopy, for real-time monitoring 

of biopharmaceutical-producing cell cultures using two production platforms: animal 

cells (CHO-250-9) producing monoclonal antibodies (mAb) and plant cells 

(Cantharanthus roseus) producing antineoplastic molecules (vincristine-VC and 

vinblastine-VB).  

First, a process capable of producing VC and VB was generated, cell differentiation was 

identified as CPP and the ability to monitor it by in situ NIR spectroscopy was firstly 

demonstrated using calibration models based on partial least squares regression (PLSR). 

Subsequently in CHO cell cultures, different regression techniques were evaluated to 

generate calibration models to monitor CPP and CQA. PLSR was inadequate because of the 

chemical and physical variability that CHO cell cultures present during the different phases 

of batch culture. Local Weighted Regression (LWR) was adequate to monitor classic CPP 

(concentration of glucose, lactate, and viable cells, amongst others) since it adequately 

handled the variability associated with the progression of cell culture. However, for the 

glycosylation profile (CQA), it was unable to properly handle the complex nonlinear 

relationships between NIR spectra and the concentration of various monoclonal antibody 

(mAb) glycoforms. This was overcome with the use of models based on support vector 

regressions (SVR), allowing the generation of models of different mAb glycoforms related 

to particular clinical effects. Globally, this work has contributed to the expansion of the 

capabilities of in situ NIR spectroscopy for the monitoring of classic CPP in a more precise 
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way, new innovative CPP such as cell physiological state in plant suspension cultures, and 

CQA such as mAb glycosylation profiles linked to clinical characteristics in animal cell 

cultures. 
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RÉSUMÉ 

 

La complexité des médicaments biopharmaceutiques implique que leur validation par les 

instances réglementaires nécessite un processus spécifique. Tout changement, notamment du 

procédé, nécessite une nouvelle validation en termes d’efficacité clinique et de sécurité pour 

le patient. Puisque les changements dans le procédé sont parfois inévitables, la qualité du 

produit n’a plus à être évaluée uniquement en fin de procédé de production (Quality by 

testing, QbT), mais tout au long du procédé, et conceptualisée dans toutes les étapes de 

fabrication (Quality by Design, QbD). Cette démarche préconise de contrôler les paramètres 

critiques du procédé (CPP) en temps réel afin de maintenir les attributs de qualité critiques 

(CQA) dans une zone de confiance préalablement définie. Cependant, la mise en œuvre du 

QbD est actuellement limitée dans l’industrie biopharmaceutique en raison de la complexité 

des procédés de culture cellulaire ainsi que par la nécessité d’utiliser des méthodes d’analyse 

multivariée de données issues des analyseurs du procédé (i.e. méthodes spectroscopiques). 

L’objectif de ce travail a dont été de développer de nouvelles applications 

méthodologiques et expérimentales, basées sur la spectroscopie proche infrarouge 

(NIR) in situ, pour le suivi en temps réel de cultures de cellules produisant des 

biopharmaceutiques. Pour cela, deux modèles cellulaires ont été étudiés : des cellules 

de hamster chinois (CHO) produisant un anticorps monoclonal (mAb) et des cellules de 

plantes (Cantharanthus roseus) produisant des molécules anticancéreuses (la 

vincristine, VC et la vinblastine, VB). 

Dans un premier temps, un procédé permettant la production de VC et de VB a été développé. 

La différentiation cellulaire de Catharanthus roseus ayant été identifiée comme un CPP, son 

suivi en ligne a été rendu possible grâce à l’utilisation combinée de la spectroscopie NIR et 

de modèles de calibration basés sur la régression des moindres carrés partiels (PLS). Dans 

un second temps, pour les cultures de cellules CHO, différentes techniques de régressions 

ont été évaluées pour générer des modèles de calibration permettant le suivi en ligne des CPP 

et des CQA. La régression PLS s’est révélée inadéquate en raison de la variabilité chimique 

et physique que les cellules CHO entrainent durant les différentes phases de culture. Au 

contraire, la régression LWR (Local Weighted Regression) a permis de suivre en temps réel 

des CPP conventionnels (concentration en glucose, en lactate, en cellules vivantes,…). Cette 
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régression permet de gérer de manière adéquate la variabilité associée à la culture cellulaire. 

Cependant, pour le suivi du profil de glycosylation des anticorps (CQA), cette régression 

n’est pas capable de gérer les relations non-linéaires existantes entre les spectres NIR et les 

concentrations en diverses formes d’anticorps glycosylés. Ce suivi en ligne des différentes 

glycoformes a été rendu possible uniquement par l’utilisation de la régression SVR (Support 

Vector Regressions). Ainsi, ce travail a ainsi permis l’amélioration du suivi en ligne de CPP 

par la spectroscopie NIR, mais également le suivi de nouveaux CPP comme l’état 

physiologique de cellules de plantes ou encore les différentes glycoformes des anticorps. 
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RESUMEN 

 

La complejidad de los productos biofarmacéuticos implica que su aprobación sea en función 

de un proceso específico. Cambios o modificaciones posteriores en éste, requieren la 

validación del medicamento en términos de efectos clínicos y bioseguridad. Debido a que los 

cambios en los procesos pueden ser inevitables, el aseguramiento de la calidad por 

inspección-QbT (Quality by Testing) al final del proceso tiende a desaparecer por la 

perspectiva de calidad por diseño-QbD (Quality by Design), la cual construye la calidad del 

medicamento-PQA (Product Quality Attribute) o CQA (Critical Quality Attribute), 

controlando en tiempo real parámetros clave del proceso-CPP (Critical Process Parameter). 

Sin embargo, su implementación ha sido limitada por lo intrincado de los cultivos celulares 

y a la necesidad de métodos multivariados que permitan emplear las complejas señales de 

analizadores de proceso como instrumentos de seguimiento o monitoreo. 

Consecuentemente, el objetivo de este trabajo ha sido desarrollar nuevas aplicaciones 

metodológicas y experimentales, basadas en la espectroscopía NIR in situ, para el 

seguimiento en tiempo real de cultivos celulares productores de biofarmacéuticos 

empleando dos plataformas de producción: células animales (CHO-250-9) productoras 

de anticuerpos monoclonales (mAb) y células vegetales (Cantharanthus roseus) 

productoras de antitumorales (vincristina-VC y vinblastinaVB).  

Primeramente, se generó un proceso capaz de producir VC y VB, se identificó como CPP a 

la diferenciación celular y se demostró de forma preliminar a nivel biorreactor, la capacidad 

de monitorearla por espectroscopía NIR in situ usando modelos de calibración basados en 

regresión de mínimos cuadrados parciales (PLSR). Posteriormente en cultivos de células 

CHO, se evaluaron diferentes técnicas de regresión para construir modelos de calibración 

para monitorear CPP y PQA. La PLSR resultó inadecuada por la variabilidad química y física 

que presentan los cultivos de células CHO durante las diferentes fases del cultivo en lote. La 

regresión local ponderada (LWR) fue adecuada para monitorear CPP clásicos (concentración 

de glucosa, lactato, células, entre otros) al manejar adecuadamente la variabilidad ligada a la 

progresión del cultivo celular. Sin embargo, para el perfil de glicosilación (CQA), fue incapaz 

de manejar adecuadamente las complejas relaciones no-lineales entre los espectros NIR y la 

concentración de diversas glicoformas del mAb. Esto fue superado con el uso de modelos 

basados en regresiones con vectores de soporte (SVR), permitiendo generar modelos de 
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diferentes glicoformas relacionadas con efectos clínicos particulares. Globalmente, este 

trabajo ha contribuido a expandir las capacidades de la espectroscopía NIR in situ para el 

monitoreo de CPP clásicos de una forma más precisa, a generar CPP innovadores como el 

estado fisiológico celular en cultivos vegetales y CQA como los perfiles de glicosilación del 

mAb ligados a características clínicas en cultivos de células animales. 

  



 

 

XXVIII 

 

INTRODUCTION (ENGLISH) 

 

Biopharmaceuticals or biological medicines have become essential for the treatment of 

several diseases such as cancer, inherited deficiencies, immunological diseases, among 

others. These medicines include molecules such as monoclonal antibodies, genetic 

vectors, vaccines, anticancer drugs, among others. The high complexity of these 

molecules has limited their production by chemical synthesis, which is why cell cultures 

are currently used as production platforms for their industrial production. 

The demand for biopharmaceuticals has increased in the last decade, particularly for 

anticancer drugs and monoclonal antibodies. Consequently, industry has had to supply 

the increasing demand of medicines while guaranteeing the quality of the products, which 

implies a technological and economic challenge. As result of the molecular complexity of 

biopharmaceuticals, these are approved by government regulatory agencies (U.S.A. FDA, 

European EMA, among others) based on an extremely specific process. Therefore, any 

modification to the production process requires new validation demonstrating the 

consistency of the drug in terms of clinical effects and biosecurity. Modifications in 

production processes may be inevitable in the biopharmaceutical industry, so two 

fundamental principles for the development of new processes for biopharmaceutical 

production have been proposed: 

 

➢ The quality of the medicine should no longer be evaluated only at the end of the 

process (Quality by testing, QbT), but must be generated during the entire 

manufacturing process (Quality by design, QbD)  

➢ The variability of the process and, thus of the product, must be controlled in real-

time, which requires a deep understanding of the production process (culture media, 

kinetics, cell physiology, impact of cell environment and cell responses to it, etc.), 

as well as process real-time monitoring. 

 

These principles led the International Council for Harmonization (ICH) to the 

presentation of a series of explanatory notes about the QbD (ICH Q8-11) for drug 

development, manufacturing, evaluation and registration. Subsequently, various 
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regulatory agencies published technical aspects for the establishment of QbD, particularly 

for advanced retro-control systems based on a deep knowledge of the production process. 

For this purpose, the Process Analytical Technology (PAT) initiative was proposed, so 

that the biopharmaceutical companies monitor in real-time critical parameters of the 

processes (Critical Process Parameter, CPP) and control them to reach the final quality 

specifications of the medicines, defined as Critical Quality Attributes (CQA). Currently, 

only some few physicochemical parameters as temperature, pH and dissolved oxygen, are 

monitored and controlled in real-time using in-line analyzers, while the monitoring of 

nutrients, by-products, products or cell concentrations are still commonly performed by 

off-line schemes. This has limited the implementation of real-time control strategies and 

the benefits of quality by design, such as continuous improvement and validation, 

adequate risk management, among others. 

In recent decades, the use of in-line process analyzers based on vibrational spectroscopy 

(near infrared, Raman, among others) has gained popularity because they can provide 

multicomponent information without sample treatment and in real-time when used with 

in situ probes. However, their use has been limited and restricted to the monitoring of 

some classical compounds of the culture media as glucose, lactate or glutamine. This is 

due to the complexity of cell culture processes and the fact that multivariate methods are 

required so that analyzer's complex signals be used, in an estimated or predictive manner, 

as monitoring instruments. Consequently, real-time monitoring of parameters which 

could better describe the cell cultures processes, such as cell physiological state or the 

quality of the biopharmaceuticals produced, have not yet been properly addressed for 

successful implementation of the PAT strategies for control and optimization of cell 

culture processes. 

In this context, the general objective of the thesis has been to develop new real-time 

monitoring methodological approaches for processing data from in situ near 

infrared spectroscopy (NIRS), in two cell cultures platforms producing 

biopharmaceuticals: animal cells (CHO) producing monoclonal antibodies (anti-

Rhesus D) and plant cells (Catharanthus roseus) producing anticancer drugs 

(vincristine and vinblastine). 
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The first part of the thesis is the essential background on biopharmaceuticals and their 

production through cell cultures. Particular attention was given to the cultures of animal 

cells (CHO) producing monoclonal antibodies and plant cells (C. roseus) producing 

anticancer, as well as their challenges for the production of biopharmaceuticals. The 

nature and interest of the QbD-PAT initiative, to address such challenges, particularly in 

plant and animal cell cultures, are described. Subsequently, a detailed introduction on 

multivariate methods, which allow to use the complex data provided by process analyzers 

and probes in a predictive manner, is presented. Once the basics for the use of 

spectroscopic data have been addressed, a collection of QbD-PAT applications in cell 

cultures using process analyzers is shown, particularly applications of near-infrared 

spectroscopy in in-line modes. Finally, in the second part a general balance of the 

background is shown to clearly establish the hypotheses, objectives, and the general 

methodology adopted. The third part of the thesis, materials and methods, presents the 

experimental and numerical methodology used to carry out the research work. The fourth 

part of the thesis, results and discussion presents the results obtained throughout the four 

years of doctoral work and is divided into 4 chapters which included works as scientific 

articles already published, submitted or for submission, also complements that are not 

included within the articles. Chapter I concerns primarily the generation of plant cell 

culture processes for anticancer production and the identification of CPP, which will then 

be used to evaluate their monitoring by NIR spectroscopy. Chapter II adressed the 

multivariable data processing methodologies commonly used for animal cell culture 

monitoring (Partial Least Squares Regression-PLSR, Principal Component Regression-

PCR) through classical parameters (concentrations of substrates, products and by-

products), as well as a new approach (Locally Weighted Regression-LWR) of these 

methodologies is proposed to overcome their limitations. Chapter III proposes the new 

use of different multivariate data processing methodologies (Supported Vector 

Regression-SVR, Artificial Neural Network Regression-ANNR) seeking improvement of 

the monitoring procedures. Finally, Chapter IV takes up the results of the previous two 

chapters to propose new methodologies allowing the monitoring of innovative parameters 

related to cell physiology and the quality of the biopharmaceuticals. The last part of the 
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thesis, general conclusions, takes a global balance of the acquired results and provides 

perspectives that may be useful for future applications. 
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INTRODUCTION (FRANÇAIS) 

 

Les médicaments biologiques ou biopharmaceutiques sont devenus essentiels 

pour le traitement de diverses maladies telles que le cancer, les carences 

héréditaires, les maladies immunologiques. Ces médicaments comprennent des 

molécules telles que des anticorps monoclonaux, des vecteurs génétiques, des 

vaccins, des médicaments anticancéreux. La grande complexité de ces 

molécules a limité leur production par synthèse chimique, de sorte que les 

cultures cellulaires se sont imposées comme plateformes pour leur production 

industriel. 

La demande de produits biopharmaceutiques a augmenté au cours de la dernière 

décennie, en particulier pour les anticorps monoclonaux et anticancéreux. En 

conséquent, l'industrie a dû répondre à cette demande croissante tout en 

garantissant la qualité de ces produits, impliquant de relever un doublé défi, à la 

fois technologique et économique. En raison de la complexité moléculaire des 

produits biopharmaceutiques, ceux-ci doivent être approuvés par les agences 

réglementaires de la santé (FDA, EMA, …) sur la base d'un processus 

extrêmement spécifique. Par conséquent, toute modification du procédé de 

production nécessite une nouvelle validation afin de montrer la consistance du 

médicament en termes d’éfficacité clinique et de biosécurité. Les modifications 

dans les procédés de production peuvent être inévitables dans l'industrie 

biopharmaceutique, si bien que deux principes fondamentaux pour le 

développement de nouveaux procédés pour la production biopharmaceutique ont 

été proposés afin d’en limiter l’impact : 

➢ La qualité des médicaments ne doit plus être évaluée qu'à la fin du 

procédé (Quality by testing), mais tout au long du processus de fabrication 

(Quality by Design, QbD) 

➢ La variabilité des procédés, et donc du produit, doit être contrôlée en 

temps réel, ce qui nécessite une compréhension détaillée du processus de 

production (milieu de culture, cinétique, physiologie cellulaire, impact de 



 

 

XXXIII 

 

l’environnement cellulaire et réponse associée…), ainsi que des moyens de 

mesure in situ.  

 

Ces deux principes ont conduit le Conseil International d'Harmonisation (ICH) à 

présenter une série de notes explicatives sur le QbD (ICH Q8-11) concernant le 

développement, la fabrication, la qualification et l'enregistrement des 

médicaments. Par la suite, au niveau local, les agences réglementaires ont 

proposé d’approfondir les aspects techniques du QbD, en particulier par la mise 

en place de systèmes avancés de rétro-contrôle basés sur une connaissance 

approfondie du procédé de production. À cette fin, l'initiative Process Analytical 

Technology (PAT) a été proposée, afin que les opérateurs des sociétés bio-

pharmaceutiques puissent suivre en temps réel les paramètres procédés 

critiques (Critical Process Parameter, CPP) afin d’atteindre les spécifications 

finales des biomédicaments, comme définies par les Attributs Qualité Critiques 

(Critical Quality Attribute, CQA). Actuellement, seuls quelques paramètres 

physico-chimiques tels que la température, le pH, ou encore la concentration en 

oxygène dissous sont mesurés et contrôlés en temps réel à l'aide d'analyseurs 

en ligne, tandis que le suivi des concentrations en nutriments, en métabolites ou 

en cellules vivantes est encore couramment effectuée par des méthodes 

analytiques hors ligne. Par conséquent, la mise en œuvre de stratégies de 

pilotage en temps réel sur la base du concept QbD, tels que l'amélioration et la 

validation continues de la qualité des produits et du risque associé ont été 

fortement limité.  

Au cours de la dernière décennie, l'utilisation d'analyseurs en ligne basés sur la 

spectroscopie vibrationnelle (proche infrarouge, Raman, entre autres) a gagné 

en popularité car ces analyseurs, lorsqu’il sont utilisés in situ, ont la capacité de 

donner des informations multi-composantes de manière non invasive et en temps 

réel au cours du procédé. Cependant, leur utilisation ont été limitée au suivi de 

certains composés classiques du milieu de culture tels que le glucose, le lactate 

ou encore la glutamine, principalement en raison de la complexité des processus 

cellulaires et du fait que des méthodes d’analyse multivariées des données sont 
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nécessaires pour pouvoir utiliser les signaux spectroscopiques complexes issus 

de l'analyseur. Par conséquent, l'analyse en temps réel de paramètres 

permettant de mieux décrire les processus cellulaires, physiologiques, ou encore 

la qualité des produits biopharmaceutiques, n'a pas été réelement abordée au 

cours des procédés.. 

 

Dans ce contexte, l'objectif général de la thèse, est de développer de 

nouvelles approches méthodologiques de traitement de données 

spectrales, issues de la spectroscopie proche infrarouge (NIRS) in situ, 

pour le suivi en temps réel des cultures cellulaires productrices de 

molécules biopharmaceutiques sur deux plateformes de production : les 

cellules animales (CHO) productrices d’anticorps monoclonaux (anti-

Rhésus D) et les cellules végétales (Catharanthus roseus) productrices 

d’anticancereux (vincristine et vinblastine). 

 

La première partie de la thèse présente les notions essentielles sur les molécules 

biopharmaceutiques et leur production. Une attention toute particulière a été 

accordée aux cultures de cellules animales (CHO) produisant des anticorps 

monoclonaux et aux cellules végétales (C. roseus) produisant des anticancéreux, 

ainsi qu'aux défis à relever pour leur production à l’échelle industrielle. Afin de 

relever ces défis, l’approche QbD-PAT a été ensuite décrite, en particulier dans 

le contexte des procédés de cultures de cellules végétales et animales. Par la 

suite, une introduction détaillée des méthodes d’analyses multivariées permettant 

d'utiliser de manière prédictive les données complexes issues des sondes de 

mesures spectroscopiques est présentée. Une fois abordées les bases de 

l'utilisation des données spectroscopiques, un ensemble d'applications QbD-PAT 

dans les procédés de culture cellulaire utilisant en particulier la spectroscopie 

proche infrarouge in situ, est présentée. Enfin dans une deuxième partie, un bilan 

général du contexte scientifique et technique est réalisé afin de proposer les 

hypothèses de travail, les objectifs scientifiques et la méthodologie générale 

adoptée au cours de ce travail de thèse. La troisième partie du manuscrit 
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présente la méthodologie expérimentale et numérique employée pour mener à 

bien les travaux de recherche. 

La quatrième partie du manuscrit de thèse présente les résultats obtenus au 

cours des quatre années de doctorat et est divisée en quatre chapitres. Le 

premier chapitre concerne principalement le développement d’un procédé de 

culture de cellules végétales pour la production d’anticancéreux et l'identification 

des CPP, qui seront ensuite utilisés pour le suivi en temps réel par spectroscopie 

NIR. Le deuxième chapitre présente les méthodologies de traitement de données 

multivariées couramment utilisées pour le suivi des procédés de culture de 

cellules animales (régression partielle par les moindres carré-PLSR, régression 

en composantes principales-PCR), ainsi qu’une nouvelle aproche (Régression 

pondérée localement-LWR) afin de surmonter les limites des deux précédentes 

méthodes. Le troisème chapitre propose une nouvelle utilisation de différentes 

méthodologies de traitement de données multivariées (Régressions par 

machines à vecteurs de supports -SVR, Régression par réseau de neurones 

artificiels-ANNR) afin d’améliorer les performances des modèles de prédiction. 

Enfin, le quatrième et dernier chapitre utilise les résultats des chapitres 

précédents afin proposer de nouvelles méthodologies permettant le suivi de 

paramètres innovants liés à l'état physiologique des cellules ou à la qualité des 

biopharmaceutiques. La dernière partie de ce manuscrit dresse un bilan global 

des résultats acquis et propose des perspectives qui pourraient être utiles pour 

de futures applications. 
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INTRODUCCIÓN (ESPAÑOL) 

  

Las medicinas biológicas o biofarmacéuticos, se han vuelto imprescindibles para el 

tratamiento de diversas enfermedades como el cáncer, deficiencias hereditarias, 

enfermedades inmunológicas, entre otros. Estos medicamentos incluyen moléculas como 

anticuerpos monoclonales, vectores genéticos, vacunas, anticancerígenos, entre otros. La 

elevada complejidad de estas moléculas ha limitado su producción por síntesis química, por 

lo que actualmente se emplean cultivos celulares como plataformas de producción para su 

producción industrial. 

La demanda de biofarmacéuticos ha aumentado en la última década, particularmente para los 

anticancerígenos y anticuerpos monoclonales. Consecuentemente, la industria ha debido 

satisfacer la creciente demanda garantizando la calidad de los productos, lo cual implica un 

reto tecnológico y económico. Como resultado de la complejidad molecular de los 

biofarmacéuticos, estos son aprobados por las agencias sanitarias gubernamentales sobre la 

base de un proceso extremadamente específico. Por lo tanto, cualquier modificación al 

proceso de producción requiere una nueva validación que demuestre la consistencia del 

medicamento en términos de efectos clínicos y bioseguridad. Las modificaciones en los 

procesos de producción pueden ser inevitables en la industria biofarmacéutica, por lo que se 

han propuesto dos principios fundamentales para el desarrollo de nuevos procesos para la 

producción de biofarmacéuticos: 

 

➢ La calidad del medicamento ya no debe evaluarse sólo al final del proceso (Calidad 

por inspección, QbT), sino que debe generarse durante todo el proceso de 

manufactura (Calidad por diseño, QbD) 

➢ la variabilidad del proceso y, por lo tanto, del producto, debe controlarse en tiempo 

real, lo que requiere una comprensión detallada del proceso de producción (medio de 

cultivo, cinética, fisiología celular, impacto del medio ambiente celular y respuestas 

asociadas, entre otros), así como seguimiento de éste en tiempo real.  

 

Estos principios condujeron al Consejo Internacional para la Armonización (ICH) a presentar 

una serie de notas explicativas sobre la QbD (ICH Q8-11) para el desarrollo, la fabricación, 
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la evaluación y el registro de medicamentos. Posteriormente a nivel local, las agencias 

gubernamentales profundizaron en aspectos técnicos para la instauración de la QbD, 

particularmente para la instauración de sistemas avanzados de retrocontrol basados en un 

profundo conocimiento del proceso de producción. Para este fin, la iniciativa Tecnología 

Analítica de Procesos (PAT) fue propuesta, a fin de que las sociedades biofarmacéuticas 

puedan monitorear en tiempo real parámetros críticos de los procesos (Critical Process 

Parameter, CPP) y los controlen para alcanzar las especificaciones finales de los 

medicamentos, definidos como parámetros críticos de calidad (Critical Quality attributes, 

CQA).  

Actualmente solo unos pocos parámetros fisicoquímicos como la temperatura, el pH, o la 

concentración de oxígeno disuelto, son monitoreados y controlados en tiempo real 

empleando analizadores in-line, mientras que el monitoreo de las concentraciones de 

nutrientes, metabolitos o células aún se realiza comúnmente mediante métodos off-line. Esto 

ha limitado la implementación de estrategias de control en tiempo real y los beneficios que 

conlleva el concepto de calidad por diseño, tales como la mejora y validación continua, 

adecuado manejo de riesgos, entre otros.  

En las últimas décadas el uso de analizadores de procesos in-line basados en espectroscopía 

vibracional (infrarrojo cercano, Raman, entre otros) ha ganado popularidad debido a que 

tienen la capacidad de brindar información multicomponente sin tratamiento muestral y en 

tiempo real cuando se usan junto con sondas in situ. Sin embargo, su utilización ha estado 

limitada al seguimiento de ciertos componentes clásicos del medio de cultivo como la 

glucosa, el lactato y la glutamina, debido principalmente a la complejidad de los procesos de 

cultivo celular y al hecho de que se requiere métodos multivariados para poder utilizar las 

complejas señales espectroscópicas brindadas por estos analizadores. Consecuentemente, el 

seguimiento en tiempo real de parámetros que permitan describir mejor los procesos 

celulares, como aspectos fisiológicos o sobre la calidad de los productos biofarmacéuticos, 

no ha sido enteramente abordado.  

 

En este contexto, el objetivo general de la tesis es desarrollar nuevos enfoques 

metodológicos para el procesamiento de datos, derivados de la espectroscopía de 

infrarrojo cercano (NIRS) in situ, para el monitoreo en tiempo real de cultivos celulares 
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productores de biofarmacéuticos en dos plataformas de producción: células animales 

(CHO) productoras de anticuerpos monoclonales (anti-Rhesus D) y células vegetales 

(Catharanthus roseus) productoras de anticancerígenos (vincristina y vinblastina). 

 

La primera parte de la tesis presenta las nociones esenciales sobre los biofarmacéuticos y su 

producción mediante cultivos celulares. Se dio atención particular a los cultivos de células 

animales (CHO) productoras de anticuerpos monoclonales y células vegetales (C. roseus, T. 

globosa) productoras de anticancerígenos, así como sus retos para la producción de 

biofarmacéuticos. La naturaleza y el interés de la iniciativa QbD-PAT, para abordar los retos 

de los cultivos celulares, particularmente en cultivos de células vegetales y animales, son 

descritos. Posteriormente, una introducción detallada a los métodos multivariados, que 

permitan emplear los complejos datos brindados por los analizadores de proceso de manera 

predictiva, es presentada. Una vez abordados los aspectos básicos para el uso de datos 

espectroscópicos, se muestra una colección de aplicaciones QbD-PAT en cultivos celulares 

empleando analizadores de proceso, particularmente aplicaciones de la espectroscopía de 

infrarrojo cercano en modos in-line. Finalmente, en la segunda parte se muestra un balance 

general de los antecedentes para fijar claramente las hipótesis, objetivos, y la metodología 

general adoptada. La tercera parte de la tesis, materiales y métodos, presenta la metodología 

experimental y numérica empleada para realizar el trabajo de investigación. La cuarta parte 

de la tesis, resultados y discusión, presenta los resultados obtenidos a lo largo de los cuatro 

años de trabajo doctoral y se encuentra dividida en 4 capítulos. El capítulo I concierne 

principalmente el desarrollo de un proceso de cultivo de células vegetales para la producción 

de anticancerígenos y a la identificación de CPP, que posteriormente serán usados para 

evaluar su monitoreo mediante espectroscopía NIR. El capítulo II presenta las metodologías 

multivariables de tratamiento de datos empleadas actualmente para el monitoreo de cultivos 

celulares (Partial Leats Squares Regression-PLSR, Principal Component Regression-PCR) y 

sus limitaciones, así también se propone un nuevo enfoque (Locally Weighted Regression-

LWR) de estas metodologías para superar sus limitaciones. El capitulo III propone el nuevo 

uso de diferentes metodologías de tratamiento de datos multivariados (Supported Vector 

Regression-SVR, Artificial Neural Network Regression-ANNR) para mejorar el desempeño 

de modelos de predicción. Finalmente, el capitulo IV retoma los resultados de los dos 
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capítulos anteriores para proponer nuevas metodologías que permitan monitorear parámetros 

innovadores relacionados con el estado fisiológico de las células o a la calidad de los 

biofarmacéuticos. La ultima parte de la tesis, conclusiones generales, hace un balance global 

de los resultados adquiridos y brinda perspectivas que puedan ser de utilidad para 

aplicaciones futuras. 
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1 BACKGROUND 
1.1 BIOPHARMACEUTICALS, CELL CULTURE & QUALITY 
 

Biopharmaceuticals are complex molecules produced by living organisms which have 

revolutionized the way medicine treats diseases such as immunologic illnesses, cancer, 

heredity deficiencies, among others. The term biopharmaceutical has been controversial, and 

the meaning changes according to scientific, regulatory, financial and popular context. It was 

first used in the 1980s to describe therapeutic proteins produced in biological systems (Walsh 

1999), more recently, several proteins and non-protein substances such as nucleic acids for 

diagnostics, as opposed to therapeutic purposes, have been also called biopharmaceutics 

(Walsh 2002), revealing the trend and need of a broader definition which could be  

“biotechnology medicine” or “biotechnology product”.  

There are two main types of trends about biopharmaceuticals (Rader 2008): Broad biotech 

and New biotech. Broad biotech includes pharmaceuticals that are biological and 

manufactured by biotechnology, a broad view preferred in north America, where regulatory 

definitions such as biological products are used to regulate the market of biopharmaceuticals 

and related products (U.S. Food and Drug Administration 2008) (FDA); New biotech defines 

biopharmaceuticals such as those based on new technologies including genetic engineering. 

This definition is preferred in Europe, where those products are regulated as biological 

medicinal products through the European Medicines Agency (EMA). 

According to these trends in biopharmaceuticals, there are several production platforms 

based on the nature of the producing living organisms, either wild or recombinant in nature, 

for instance, pluricellular organisms such as animals or plants cultures in farms and fields, or 

prokaryote and eukaryote cells in bioreactors. Such diverse production platforms involve 

different advantages and drawbacks in terms of the production process as well as in the 

properties of the biopharmaceutical product. For example, prokaryote-based processes could 

be more easily set up, although such medicines would lack post-translational modifications, 

which are inherent to eukaryotic cells such as insect, plant, animal or fungi cells. This is of 

great concern because translational modifications such as glycosylation or proper protein 

folding have great impact on clinical effects. Thus, there is an increasing interest for 
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eukaryotic, particularly mammalian, cell cultures for biopharmaceutical production with 

similar composition or post-translational modifications to those of humans. The 

biopharmaceutical industry is rapidly growing; in 2014, approximately 212 biological 

medicines received approval by sanitary regulatory agencies (Walsh 2014), while this 

number increased to 378 in 2018 (Walsh 2018). Most recently approved biopharmaceutics 

(2014-2018) included 68 monoclonal antibodies (mAb), 23 hormones, 16 clotting factors, 9 

enzymes, 7 vaccines, 5 nucleic acid–based products and 4 engineered cell–based products 

and for the first time, an interference RNA (iRNA) (Walsh 2018). Much of the growing 

availability of biopharmaceutics is due to released biosimilars, although some of them have 

also been withdrawn from the market for commercial and sanitary reasons.  

Nowadays, the application spectrum of biopharmaceutics is broad and covers several disease 

treatments as shown in Figure 1-a. Although the nature of biopharmaceutics is diverse 

including enzymes, hormones, among others, almost half (48 %) of traded biopharmaceutics 

are mAb (Walsh 2018) as indicated in Figure 1-b, with an estimated world market size of 

125 billion US dollars by 2020 (Ecker et al. 2015). The main platforms are Escherichia coli 

(E. coli), yeast and mammalian cell cultures, particularly Chinese Hamster Ovary (CHO) 

cells (Figure 1-c). As these molecules are produced in living organisms and may also interact 

with risky compounds in the production process (dangerous Host Cell Proteins (HCP), virus, 

prions, incomplete-processed biopharmaceutics, etc.), complex and severe downstream 

processes are used for assuring safety issues. Thus, maintaining the integrity of 

biopharmaceutics particularly with post-translational modifications while limiting risks is a 

technological and economic challenge. Failures in the former described challenge could lead 

to lot withdrawals, compromising patients safety, and trust in health-care providers, 

governmental agencies, and purchasers (Bunniran et al. 2009). Thus, relentless control of 

production processes is needed compared with small pharmaceutical molecules as shown in 

Figure 1-d.   
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Figure 1. Biopharmaceuticals: market and manufacturing (Walsh 2014, 2018) 

 

Pharmaceutical processes are usually operated under empirical approaches with fixed process 

conditions based on repeatability to achieve medicinal properties at the end of the production 

process. However, the complexity of biopharmaceuticals is a challenge to the 

biopharmaceutical industry which requires the integration of several disciplines from 

development to production processes (Alvi 2007) so as to ensure medicine properties and 

thus patient safety. A new initiative called Quality by Design (QbD) is intended to surpass 

the challenges of biopharmaceutical production (Rathore and Winkle 2009). QbD is based 

on three fundamental ideas: (i) risk management, (ii) knowledge management and (iii) 

process control. Risk management is a systematic process for the assessment of risks on the 
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quality of the medicine during the product lifecycle. Therefore, there is a need of innovative 

monitoring protocols so that retro control strategies could be put into operation. Finally, 

managing risks and process knowledge serves to execute changes in the manufacturing 

process to control and ensure medicine properties. This requires an extensive and increasing 

comprehension of the production process, i.e. knowledge management, for instance, the 

performance of the cell lines in particular cell culture media as well as the effect of the 

bioreactor operating parameters on biopharmaceutic properties.  

 

  



1. BACKGROUND 

1.1 Biopharmaceuticals, cell culture & quality 

 

 

5 

 

1.1.1 Principles of bioreactor CHO cell cultures  

 

1.1.1.1 Cell line 

 

There are plenty of animal cell lines for industrial processes. However, CHO cell lines are 

particularly important in industry due to their advantages for biopharmaceutical production 

(Rita Costa et al. 2010): capable of high density cultures, relatively tolerant to adaptation in 

synthetic culture media, able to support process extrapolation due to a relative resistance to 

shear stress in large scale cultures, receptive to a broad spectrum of genetic engineering tools 

such as gene amplification systems, and similar to human profiles of post-translational 

modifications, among others. Consequently, more than 60 % of biopharmaceutical processes 

based on animal cell cultures use CHO cell lines (Walsh 2014). Development of productive 

cell lines requires extensive technical and economic resources. Thus, the gene of interest is 

often expressed in CHO cell lines to test efficacy and manufacturability suitability. Once 

proven, it is introduced into a CHO host cell line with effective amplification systems, such 

as DHFR-deficient CHO cell lines. It is important to use host cell lines already adapted to 

industrial culture media to save time and expression efficacy. High producing clones are then 

isolated. Since screening procedures are labor-intensive and time-consuming, novel cell 

screening systems such as fluorescence-activated cell sorting (FACS), the ClonePix™ 

system (Genetix), the LEAP™ system (Cyntellect) among others, are often used. Once 

promising clones are identified based on high expression levels, their performance in culture 

media is evaluated seeking ideal behavior for large-scale production (Kim et al. 2012). 

 

 

1.1.1.2 Culture media  

 

Animal cell cultures require a culture media for assuring proper cell metabolism. Moreover, 

culture media composition also plays an important role in protecting cells against shear stress 

and pH variation to some extent. Therefore, culture media must be optimized for cell growth 

as well as for product production, including titer and post-translational modifications.  

At first, culture media developments included serum or tissue extractions from animals, 

which provided a rich environment for cell culture. However, new developments in the 

biopharmaceutical industry tend to exclude these compounds due to sanitary issues. Indeed, 

the use of animal-derived compounds are risky since there may also contain contamination 
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factors such as viruses or prions. Moreover, there is great lot-to-lot variation which may 

compromise process reproducibility and consistent product properties. Main components of 

animal cell culture media include (Yao and Asayama 2017): 

 

- Hydrolysates: source of diverse compounds such as amino acids, salts, lipids, 

vitamins and low-molecular-weight peptides.  

- Growth factors, hormones: required for inducing proliferation, 

differentiations, migration or export-import of nutrient compounds.  

- Carrier proteins: particularly used for transportation into cells of non-

dissolving compounds in aqueous solutions, such as lipids. Perhaps the most 

used is albumin, which also has toxin-neutralizing, antioxidant, and shear 

stress-reducing effects. Other examples are transferrin and lactoferrin for iron 

transportation into cells.  

- Lipids and related components: serve various roles as membrane components, 

in nutrient storage and transport, in signal transduction and also as precursors 

if the cell lines lack the enzymes for particular metabolic pathways, such as 

for cholesterol synthesis.  

- Transition metals: Se, Fe, Cu, Mn, and Zn; used for electron transfer in the 

active centers of enzymes or physiological proteins such as selenoproteins 

(glutathione peroxidase, thioredoxin reductase).  

- Vitamins: necessary as precursors of diverse co-factors. Moreover, vitamin C 

and E have antioxidant effects.  

- Polyamines: low-molecular-weight compounds having protein or nucleic-

acid synthesis promoting effects.  

- Reductants: important for maintaining intracellular redox environment, the 

most common reductant in culture media is cysteine.  

- Protective additives, detergents: reduce shear stress. Pluronic F-68 or Tween 

80 are commonly used for limited toxic activity and for capacity to solubilize 

lipophilic substances.  

Although these compounds are of great importance for the success of cell culture processes, 

they are not usually monitored during continuous validation of processes. Indeed, only some 
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compounds such as the carbon and nitrogen source are often evaluated, as well as the 

byproducts of their metabolism such as ammonium and lactate. Glucose is the main energetic 

source, oxidized to pyruvate through the glycolysis pathway and then through the citric acid 

cycle in mitochondria. Glucose is commonly added at concentrations between 0.5 and 30 

mM. Glutamine serves as carbon and nitrogen source, and also as an important energetic 

source for cells. It is usually added in concentration between 0.5 and 5 mM. Glucose and 

glutamine metabolism results in CO2, lactate and ammonium production, which may have 

toxic effects for cells. Thus, there is also an interest in limiting such toxic effects by different 

strategies, as for example by substituting glucose and glutamine (Altamirano et al. 2000) in 

culture media, among others.  

 

1.1.1.3 Engineering considerations & Operating parameters 

 

In addition to culture media composition, the operating conditions of the reactor culture is 

essential for successful production processes. Temperature, dissolved oxygen, pH and 

osmolarity have received important attention since they may enhance the performance of cell 

culture processes. Optimal temperature for cell growth is usually 37 ºC but temperatures 

between 33 and 35 °C are frequently observed during production processes Indeed, decrease 

of temperature to 33 ºC may increase product synthesis or express anti-apoptosis genes 

(Gulevsky et al. 2017), which could enhance process productivity (Al-Fageeh et al. 2006).  

Oxygen is required through respiration processes of energy metabolism. Because of the low 

solubility of oxygen in aqueous systems (≈7 mg.L-1 at 37 ºC), it must be supplied 

continuously to satisfy the specific consumption rate of oxygen by cells (0.2 – 0.7 mM.10-9 

cells.h-1). In bioreactor systems, oxygen is often supplied through bubbles diffusing into the 

culture media by sparges or membranes. It is usually controlled between 20 % and 50 % of 

dissolved oxygen. Oxygen availability is critical since a lack may cause over production of 

lactate, while high concentrations may have cytotoxic effects (Fleischaker and Sinskey 

1981).  

The pH is another important variable to control in CHO cell cultures. Indeed, cells tolerate 

only a small frame of pH range, between 6.8 and 7.8. The optimal pH value is usually 

reported as 7.2 for CHO cells, a deviation from this point may impact glucose consumption 

and lactate production (Schmid et al. 1990). Control of pH is usually performed using buffers, 
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addition of sodium hydroxyde or CO2 into the culture system. It is also important to control 

osmolarity within optimal values (≈ 300 mOsm.kg-1), which may be strongly affected by pH 

control or evaporation phenomena. In the case of hyper-osmolarity, there may be a decrease 

in cell growth, an increase in protein production or changes in post-translational 

modifications, particularly in glycosylation (Oyaas 2003; Konno et al. 2012). All these 

variables are critical, considering that in large-scale cultures there are problems commonly 

due to relatively low mixing intensity, for instance, limited CO2 removal, oxygen, pH and 

nutrient gradients, among others (Xing et al. 2009).   

 

1.1.1.4 Monoclonal antibodies: Structure and heterogeneity 

 

Antibodies (Ab), also known as immunoglobulins (Ig), are large, Y-shaped proteins produced 

mainly by B lymphocytes which are used by the immune system for neutralizing pathogens 

in animals. Currently, the majority of therapies based on antibodies are immunoglobulin G 

(IgG1) mAb (Ryman and Meibohm 2017; Grilo and Mantalaris 2019), having the same basic 

structure as shown in Figure 2.  

 

 
 

Figure 2. Structure of monoclonal antibodies 
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mAb are complex heterodimeric proteins with an approximate molecular weight of 150 kDa. 

Their composition includes four polypeptide chains, two identical heavy chains (50 kDa) and 

also two light chains (25 kDa). Both chains are linked by disulfide bonds forming a Y-shape, 

with constant domains (CL and CH) and variable domains (VL and VH). These variable 

domains, as well as the CH1 of the heavy chains constitute the antigen binding fragment 

(Fab) which also contains a hypervariable region of 5 to 10 amino acids with high specificity 

for the target antigen (McDonnell 2015). The CH2 and CH3 domains constitute the 

crystallizable fragment region (Fc) which can bind to diverse receptors on cells (Ryman and 

Meibohm 2017).  

In 1975, the first attempts for mAb production involved fusing mouse lymphocyte and 

myeloma cells to produce murine hybridomas; an antigen is injected into a mouse and the 

resulting antigen-specific plasma cells are recovered from the spleen, isolated and fused with 

cancerous immune cell for immortality (Lerner 1981). Then these hybrid cells were cloned 

for identical daughter clones and cell line establishment. Originally, only murine hybridomas 

were produced through this technology; however, there were strong immune reactions in 

humans due to differences in the mAb effector region (Reichert et al. 2005). Therefore, new 

mAb types were generated through recombinant technology, for instance, chimeric mAb 

generated with murine VH and VL variable domains and human CH1, CH2 and CH3 

domains, or humanized mAb that are totally human in nature with only the complementarity 

determining regions with a murine nature. More recently, primatized (Reichert et al. 2005) 

and fully human mAb has been developed seeking a reduction of undesirable immunogenic 

effects and enhanced patient tolerability (Ryman and Meibohm 2017). Perhaps the most 

important post-translational modification of mAb is glycosylation, consisting of glycan chain 

addition into the heavy chains, particularly into the highly conserved N-glycosylation locus 

on the fragment crystallizable region (Fc) in both heavy chains. The N-glycosylation position 

in mAb is on Asn-297 (Huhn et al. 2009) as schematically shown in Figure 2.  

Although glycan chains within mAb represent only 2-3 % of total mAb molecular weight, 

they are essential for mAb conformation, stability, functionality (Zheng et al. 2011) and thus 

clinical effects, particularly complement-dependent cytotoxicity (CDC), antibody-dependent 

cell-mediated cytotoxicity (ADCC), immune modulation (del Val et al. 2010) and serum half-

life (Dwek et al. 1995).  
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Glycosylation profile varies according to the cell line used and also by operating conditions. 

Thus, there is often reported some variability in glycosylation profiles that must be monitored 

and controlled in commercial processes (Schiestl et al. 2011) to ensure the conservation of 

mAb clinical profiles associated with glycosylation. This variability is due to the presence of 

mAb with different glycan chains attached to the same mAb structure; such variants have 

been referred to as glycoforms (Rademacher et al. 1988). There are diverse glycoforms as 

shown in Figure 3, although the great majority has the same basic skeleton of 5 sugar 

residues: Two N-acetylglucosamine residues attached to three mannose moieties. Such 

glycosylation heterogeneity is often analyzed under two main approaches: macro- and micro-

heterogeneity. Macro-heterogeneity concerns the presence or absence of a glycan chain 

attached to the mAb, while micro-heterogeneity analyzes the structure of glycan chains in 

terms of sugar moieties.   

 

Figure 3. Common glycosylation forms in mAb (Ryman and Meibohm 2017) 

 

Glycosylation heterogeneity depends on several factors such as the nature of the cell line, 

culture media, nutrient availability and by-product accumulation in culture media, cell 

physiological state, operating conditions such as pH, temperature, oxygen concentration and 

osmolarity, among others (Chotigeat et al. 1994; Yoon et al. 2005; del Val et al. 2010).   
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The choice of the production cell line also has a significant effect on the micro-heterogeneity 

of mAb mainly because the expression of glucosyltransferase enzymes and glycosidases 

varies from one to another (Raju et al. 2000). Commonly, CHO cells are reported to 

preferentially synthetize non-galactosylated (G0) glycoforms in contrast to other cell lines 

(Beck et al. 2013). Nutrient availability has been proven to affect both macro- and micro-

heterogeneity when glucose is replaced by fructose, mannose or galactose (Tachibana et al. 

1994). Effects of carbon source are likely due to different efficiency capacity of cells to 

channel sugar inputs through the nucleotide sugar pathway (del Val et al. 2010). Therefore, 

different strategies based on different sugar supplements have been explored seeking 

particular glycosylation profiles (Weikert et al. 1999; Hossler et al. 2009; Wong et al. 2010). 

For instance, the addition of 20 mM galactose into CHO cell culture media resulted in an 

increase in galactosylation from 14 % to 25 % (Kildegaard et al. 2016). Not only is the 

presence of sugars essential, but also their dynamics. Depletion of glucose is reported to 

increase the extent of non-glycosylated mAb, which can raise total mAb production values 

by as much as high as 45 %. This is likely due to the preference of cells to use glucose for 

energetic purposes instead of for supplying the precursor pool for glycosylation (Liu et al. 

2013). Glutamine, an important energetic source has also important effects on glycosylation 

patterns, mainly related to high levels of non-glycosylated and Man5 forms in low glutamine 

concentration conditions (Fan et al. 2015).  
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1.1.2 Principles of bioreactor plant cell suspension cultures 

 

Plants have historically been the source of clinical treatments. Their use has several variants 

based on cultural, knowledge and technological development stages of societies, primarily 

as herbal medicinal products, and more recently as the source of Active Pharmaceutical 

Ingredients (API) (Rates 2001; Niero et al. 2018) and biological medicines.  

The development of plant-derived pharmaceuticals had firstly focused on solvent extraction 

of active molecules from plants, though low productivity, dependence on environmental 

factors and destruction of plants have remained as major issues to overcome. Thus, intensive 

efforts have been invested for increasing availability such as production via in vitro cultures, 

particularly suspension cultures feasible for scale-up. Nonetheless, commercial production 

using industrial scale suspension culture has been limited to a few molecules such as 

paclitaxel, shikonine, berberine, ginseng, among others (Bourgaud et al. 2001). When 

processes are intended for pharmaceutical issues, such as for the antileukemic agent 

paclitaxel, they can be considered as biopharmaceutical under the Broad biotech perspective 

since those processes use wild cell lines. The primary interest of plant biopharmaceutical 

processes was focused on native bioactive molecule production not industrially and 

economically feasible to be produced by chemical synthesis.  

Nowadays, there has been an increasing interest for using plant recombinant cell lines as a 

promising platform due to their sanitary safety (Hellwig et al. 2004; Huang and McDonald 

2009) and properties. Plant cells do not propagate mammalian virus, prions or pathogens, 

grow in chemically defined and economic culture media, and are capable of performing post-

translational modifications, particularly glycosylation. Thus, plant cell suspension culture 

processes are now being considered as an alternative to animal cell culture processes, 

particularly to reduce production costs and make them more affordable to patients (Kaiser 

2008).  

Examples of the potential of plant suspension cultures as a new biotech biopharmaceutical 

production platform are the success of taliglucerase alpha (Elelyso®) for treating Gaucher 

disease (Grabowski et al. 2014) or the approval of Newcastle disease virus HN for treating 

Newcastle disease (Yusibov et al. 2011) and several proteins in pre- and clinical trials (Xu 

and Zhang 2014).  
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1.1.2.1 Cell lines 

 

Development of a plant cell line often starts with callus induction from plant tissue, 

particularly from those suspected to be high producers and, ideally, also containing actively 

dividing cells. Then the callus is propagated through subcultures and placed into mixed liquid 

culture media for establishment of suspension cultures. Several rounds of subcultures are 

performed to discard callus clusters and finally fine suspension cultures with cell aggregates 

of only some few cells are generated, the whole process taking approximately 10 months 

(Mustafa et al. 2011).  

Plant cells have diverse shapes and size profiles; spherical, cylindrical and geometric-like 

shapes are common with diameters of 50 – 100 μm. Their proliferation nature is characterized 

by 15 to 100 h doubling times, and by the fact that there is a tendency for cell aggregation. 

The size of cell aggregates may be small (composed of only few cells) or large (in the order 

of several millimeters), depending on the origin of the cell line and the operating parameters 

of culture (Chattopadhyay et al. 2002). In vitro plant cells can indefinitely proliferate and are 

totipotent when provided with proper plant growth regulator (PGR) regimen, can grow within 

wide pH (5 – 7) and temperature (20 ºC – 35 ºC) ranges (Maathuis 2013). 

Genetic and phenotypic changes usually occur in terms of somoclonal variation (Deus-

Neumann and Zenk 1984) and cell differentiation (Torrey 1975). The complex nature of cell 

proliferation in cell aggregates is not only a challenge during production cultures, but also 

for the establishment of monoclonal cell lines. Therefore recombinant biologic production is 

usually performed by polyclonal cultures (Nocarova and Fischer 2009).  

 

1.1.2.2 Culture media 

 

Plant culture media should be formulated considering the specific requirements of a cell line. 

Several studies were performed at the beginning of plant cell technology for determining the 

major needs of plant cells. Nowadays, most plant culture media is composed of 

macronutrients, micronutrients, vitamins, amino acids or nitrogen supplements, a carbon 

source, undefined organic supplements and growth regulators (I.M. and M. 2012).  

Macro-nutrients are the source of nitrogen, phosphorus, potassium, calcium, magnesium and 

sulfur. The ideal concentration of nitrogen and potassium is around 25 mM, in the range of 
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1-3 mM for calcium, phosphorus, sulfur and magnesium. Nitrogen could be added as 

separated nitrates and ammonium salts or together as ammonium nitrate. Micro-nutrients, 

such as iron, manganese, zinc, boron, copper, molybdenum, among others, are required in 

minute quantities in the order of a few milligrams per liter. Among the microelements, the 

iron requirement is very critical. Chelated forms of iron and copper are commonly used in 

culture media for proper uptake by cells. 

Plant cells are capable of synthesizing particular organic compounds such as vitamins, amino 

acids and organic acids and hormones, though in suboptimal quantities, therefore they are 

often added to culture media as supplements for improving culture performance. Vitamins 

added to culture media include thiamine, riboflavin, niacin, pyridoxine, folic acid, 

pantothenic acid, biotin, ascorbic acid among others. Supplementation of amino acids such 

as L-glutamine, L-asparagine, L- arginine, L-cysteine is also common for improving nitrogen 

uptake. Plant hormones or growth regulators are a group of organic compounds that promote 

growth, and cell development. Four broad classes of plant growth regulators (PGR) or 

hormones are used, auxins, cytokinins, gibberellins and abscisic acid derivatives.  

In vitro cultures are usually heterotrophic and organic carbon sources are often needed. 

Sucrose being the most preferred, though fructose or even non-conventional sources such as 

lactose, maltose, galactose, raffinose, acetate, among others, have been used though with 

limited success. 

Culture media is often autoclaved and thermolabile compounds such as PGR or vitamins, 

filter-sterilized and then added to the autoclaved medium. Nowadays, there are plenty of 

already-made plant culture media in the market which likely fit common necessities 

according to the nature of the cell line, for instance, White’s, Murashige and Skoog, Gamborg 

B5, N6, Nitsch's media, among others.  

 

1.1.2.3 Engineering considerations & Operating parameters 

 

 

Plant cell nature implies particular considerations for bioreactor cultures, such as cell 

aggregation, mixing issues related to oxygen demand, rheological properties, shear 

sensitivity of plant cell cultures, and foaming.  
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Plant cells in suspension tend to form small cell aggregates or large clumps. This proliferation 

nature affects mass transfer and can lead to oxygen, nutrients or by-products inhomogeneities 

inside large aggregates, which may cause some cellular organization or differentiation with 

diverse effects on process performance. Mixing promotes growth by enhancing the transfer 

of oxygen and nutrients into cell aggregates. Mixing must consider rheological characteristics 

of the culture media (Scragg 1995), usually reported as highly viscous or with non-

Newtonian behavior (Curtis and Emery 1993), relative high shear sensitivity to 

hydrodynamic stresses (Huang and McDonald 2009) and relatively low oxygen demand of 

cells, in the order of 0.1–0.5 mmol-O2.gDCW-1.h-1 (Gao and Lee 1992). Thus, cultures are 

usually mixed at very low agitation speeds with high oxygen availability (Chattopadhyay et 

al. 2002). Aeration is also closely related to foaming, which has a remarkable influence on 

cell growth and both secondary metabolite and protein production. Several antifoaming 

agents have been tested, though their use is often related to reduction of cell growth and 

product formation (Wongsamuth and Doran 1994). Moreover, foaming may also trap cells 

within the foam phase and films of cells can be then attached to bioreactor walls, limiting the 

performance of the culture process.   

 

1.1.2.4 Vincristine, vinblastine and suspension cultures 

 

Vincristine (VC) and vinblastine (VB) are alkaloids with antileukemic properties which 

cause cell arrest during mitosis (Madoc-Jones and Mauro 1968). Vincristine is often used for 

treating diverse types of cancers such as acute lymphocytic leukemia, acute myeloid 

leukemia, Hodgkin's disease, neuroblastoma, and small cell lung cancer and Wilms tumor, 

among others. Vinblastine is often prescribed for Hodgkin's lymphoma, non-small cell lung 

cancer, bladder cancer, brain cancer, melanoma, and testicular cancer. Nowadays production 

is mainly carried out by extraction from Catharanthus roseus (C.r.) plant material grown in 

the United States, Spain, China, Africa, Australia, India and Southern Europe (Barkat et al. 

2017). However, purification from whole plants, characterized by low product concentration 

remains a challenge to improving production processes.  

The development of VC and VB as bioactive molecules against cancer started in the 1950. 

C.r. plants, used in traditional medicines acquired relevance as screening molecules with 

pharmaceutical potential. The medical research department of the Western Ontario 
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University decided to study the effects of plant extracts under controlled conditions. At first, 

the main interest was for diabetes treatment, but plant extracts did not show positive activity 

when it was intravenously supplied to rats. Animals died due to strong decrease in leucocytes, 

which finally moved attention to its anticancer properties. Several fractions were generated 

and analyzed, and the molecule showing this property was identified and called 

vincaleukoblastine (afterwards named VC) and later another molecule was also identified, 

VB. Parellely, Eli Lilly Company was also analyzing properties of C.r., which finally lead to 

a cooperation agreement between both institutions (Noble 1990). VC and VB received FDA 

approval as cancer treatments in 1963 and 1965 respectively. Since then, their use in cancer 

therapies has been increased. Moreover, there is also an interest for developing VC and VB 

derivates with improved clinical effects, such as vindesine.  

 

Vincristine Vinblastine Vindesine 

 
 

 
Figure 4. Structure of Catharanthus roseus alkaloids 

 

Since total synthesis of these kinds of molecules is complex and economically unfeasible due 

to complex molecular structure (Figure 4), plants are the main industrial supply with low 

availability of VC and VB from plant material and thus, production is currently performed 

by large scale cultivars (Parry 2004). Precursor molecules such as catharanthine and 

vindoline are solvent-extracted and then VC and VB are produced by chemical semi-

synthesis from precursors. Although large scale cultivars may appear as reliably supply, the 

low availability of molecules from plants and a complex purification processes have limited 

VC and VB provisions. Indeed, there has recently been shortages of vincristine in the USA 

causing severe shock in the health sector because there is no proper substitute for therapies 

(Roni 2019). Consequently, there have been intensive efforts for developing processes based 
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on plant suspension cultures. If so, production could be carried out using industrial reactors 

under controlled conditions that would allow the provision of the necessary conditions for 

the plant cells in suspension culture to produce VC and VB in a greater quantity. However, 

because in vivo synthesis of VC and VB requires a complex enzymatic process through 

various organelles in differentiated cells of aerial tissues (St-Pierre et al. 1999; Murata and 

Luca 2005), it has been widely believed that in vitro cultures are unable to produce VC and 

VB (Verpoorte et al. 1993). 

More recently, several works have refuted former statements and have proven production of 

VC and VB using in vitro cultures (Miura et al. 1987; Kalidass et al. 2010; Taha et al. 2014; 

Ataei-Azimi et al. 2018), particularly from calluses with early differentiation into roots or 

shoots; however, no consensus has been achieved on the effect of culture conditions and the 

role of cell differentiation required for VC and VB production has received little attention. 

Moreover, suspension cultures have also been reported producing VC and VB (Taha et al. 

2014), though no inference about this capacity was provided. Indeed, it was recently 

discovered that in vitro cultured cambial meristem cells (CMCs) contained complete sets of 

enzymes that are responsible for the production of VC and VB from vindoline, though 

vindoline supplementation was required (Zhang et al. 2015). On the other hand, there have 

been reports of vindoline producing cultures (Scott et al. 1980; Naaranlahti et al. 1989). Thus, 

there must likely be an alternative metabolic pathway for in vitro vindoline synthesis which 

could be active either during cell differentiation or in particular differentiated cells. 

Catharanthus technology should be developed to evolve novel production processes based 

on differentiated cell suspension cultures capable of producing biopharmaceuticals such as 

VC and VB. 
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1.1.3 Synthesis: Biopharmaceuticals, cell culture & quality 
 

Advances in science and engineering have allowed the development of new pharmaceuticals 

from living cells, called biopharmaceuticals. Today more than ever, these medicines are 

essential for treating several diseases and therefore there is an increasing demand. Due to the 

complex chemical structure and complicated biological synthesis of such medicines, there is 

some heterogeneity in terms of chemical structure and thus final clinical effects caused by 

uncontrolled variability within the cell culture process. This is of great concern since industry 

must maintain regulatory and sanitary compliance, assuring patients safety and efficacy of 

medicines. Therefore, there is a need to embrace new and more efficient quality approaches 

for real-time monitoring and control of cell culture processes thus assuring medicines quality.   
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1.2 NEAR INFRARED SPECTROSCOPY AS A PAT MONITORING TOOL 
 

The complexity and variability of cell cultures remain a great challenge for the monitoring 

and control of these bioprocess as for ensuring the right properties of biopharmaceutics and 

reduction of process costs. An important fraction of processes can yet be optimized to 

increase productivity while ensuring biopharmaceutical quality provided proper control of 

chemical and biological parameters are also performed (Claßen et al. 2017). However, in-

line monitoring of such parameters has been claimed as a major limiting technology for 

ensuring proper retro-control systems (Clementschitsch and Bayer 2006). Nowadays, only 

some parameters are routinely monitored using in-line sensors during cell culture processes 

such as pH, temperature and dissolved oxygen and the majority of biochemical and 

physiological parameters for cell cultures are still performed with off-line methods (Claßen 

et al. 2017).  

Off-line monitoring implies risks of contamination during manufacturing controls (Chu and 

Robinson 2001) and also delays due to sample analysis. These delays could likely fail in 

providing real-time data of process performance and thus limit proper control strategies for 

enhancing the processes. This fact is the major reason for the industry to explore novel 

monitoring approaches seeking maximization in economic and technical terms. Regulatory 

agencies such as the USA FDA and European EMA proposed the Quality by Design (QbD) 

approach strategy (Rathore and Winkle 2009; Yu et al. 2014), which could be combined with 

Process Analytical Technology (PAT) (Rathore et al. 2010). Briefly, the main objective is to 

monitor and control in real time the concentration of some process parameters such as viable 

cells, nutrients and by products, whose variability may have an impact on the Quality Target 

Product Profile (QTPP). Consequently, QTPP must be characterized by Critical Quality 

Attributes (CQA) of biopharmaceutics and also monitored in real time for continuous 

validation of the CPP control strategy (Teixeira et al. 2009a; Jenzsch et al. 2017).   

In recent years, intensive efforts have been made to establish PAT as the means to monitor 

biochemical and physiological parameters of cell cultures, particularly using automatic at-

line or on-line traditional biochemistry approaches with the aim of reducing analysis times, 

sample volumes and contamination risks. Such approaches allow the monitoring of substrates 

(glucose, glutamine) and by-products (ammonium, lactate, among others) in the order of 

minutes while for product CQA such as glycosylation in the order of hours (Burnina et al. 
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2013; Doherty et al. 2013; Henninot et al. 2015; Dong et al. 2016). In the last few decades, 

vibrational spectroscopy, in combination with multivariate analysis, has been proven to be a 

promising tool, particularly for cell culture monitoring (Li et al. 2016). However, it has 

mainly been restricted to some usual cell substrates and/or by-products (Arnold et al. 2003; 

Mattes et al. 2007; Henriques et al. 2009; Clavaud et al. 2013; Bhatia et al. 2018; Li et al. 

2018b). Indeed, the major limitation for implementation of monitoring protocols using NIRS 

analyzers is likely the challenge of using complex multivariate analysis to use spectra in a 

predictive and accurate manner, to estimate concentration of key compounds within complex 

culture media. 

In-line measurements for biopharmaceutical production by cell culture are challenging 

because of medium complexity in terms of chemical composition and dynamics during 

culture progression. Therefore, sensors with diverse principles are used for measurements of 

parameters sensitive to particular spectroscopic principles. For instance, in-line sensors based 

on dielectric, Raman, NIR and fluorescent spectroscopy, used when physical sampling from 

the bioreactor is not necessary, limiting contamination risks and providing signals related to 

process performance in real-time. Moreover, some spectroscopies such as NIR and Raman 

can provide multicomponent information within their signals or both physical and chemical 

information as in NIR spectroscopy. However, complex cell culture matrix also generates 

complex spectra that require deep knowledge of spectroscopy principles as well as of 

chemometric techniques for building correlations between spectrum and analyte values by 

reference methods. The term “chemometric” will be described later (1.2.2).  

In the context of process monitoring, these in-line analyzers are intended for performing 

systematic measurements of the process performance in real-time, which require a sound 

comprehension of the relationship between spectra and process performance for building 

calibration models. Finally, spectra could be used in a predictive manner for estimating CPP 

or CQA routinely.     
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1.2.1 The NIRS challenge for monitoring: From basis to assumptions 

 

The extent of NIR spectroscopy applications is broad since both chemical and physical 

information is contained within spectra. Thus, information extraction is complicated and is 

usually focused on either chemical or physical information. Though there are well developed 

analysis methods such as band assignment based on spectra-structure relationships, these 

methods may not be enough to unravel complex NIR spectra, particularly in actual process 

samples of complex matrices (Ozaki et al. 2006) with spectral distortions due to physical 

information in the form of scattering effects. Consequently, multivariate analysis is 

frequently, if not always, required for extracting information from complex NIR spectra. 

The implications of NIR spectral complexity is more easily perceived when compared with 

classic colorimetric analysis for concentration determination. In such classic analysis only a 

single or few registered variables (absorption at particular wavelengths) are used for 

performing correlation. This is possible as the matrix is rather simple, generating relatively 

simple spectra with few peaks at particular wavelengths, the compound of interest strongly 

marked with a limited relationship to other wavelength absorptions. In contrast, NIR spectra 

of actual processed samples are complex as every registered variable is a mixture of energy 

combinations. Thus, the use of single or few variables could not depict the whole extension 

of the process dynamics affecting the whole spectrum.  

Novel NIR analysers can provide a great number of observed variables when scanning, which 

can enhance the resolution of each in-line acquired spectrum and thus provide more detailed 

information. However, this availability of observed variables is usually greater than the 

available chemical information of the matrix (qualitative and quantitative composition) 

causing high collinearity. This scenario leads to a variety of relationship cases: exact linear 

relationships called exact multicollinearity and non-unique relationship with multiple 

solutions called near collinearity, a type of collinearity where variables can be written 

approximately as a linear function of other variables. This is one of the main reasons for the 

need for multivariate analysis and chemometrics. 
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1.2.1.1 NIRS generalities 

 

Molecules can be considered to have two main properties: static and dynamic. Static ones 

include atomic composition, structure and stereochemistry while dynamic properties are 

related to vibrational and rotation patterns as well as resonance. Although NIRS users are 

often more interested in static properties of molecules (i.e. molecule structure) rather than 

their dynamic properties (vibrational movement), the later are directly responsible for the 

existence of NIR phenomena, besides such dynamic properties are based on the static ones 

and this provides the basis of NIRS analysis. In consequence, in order to analyse NIR spectra, 

it is mandatory to understand the relationship between both properties (Williams et al. 1987). 

Near-infrared is commonly referred to as wavelength region between  780 and 2,500 nm, 

or 1/ 12,820 and 4,000 cm-1. NIR analyses are mainly focused on vibrational energy, which 

refers to atomic bond oscillations in a molecule along the axis bond. The initial conceptual 

basis of vibrational spectroscopy (IR, NIR and Raman) has used the harmonic oscillation 

(based on Hooke’s law) to explain the interaction between energy and matter (Figure 5). 

Therefore, a spring and two balls have been used to model a bond that connects two atoms. 

The oscillations may result into several vibrational states of a molecule.  

 

 

 

 

 

 

 

 

 

 

 

 

For instance, there may be three main levels depending on atom bond lengths. An equilibrium 

state with low potential energy and two states of high potential energy for the compressed 

and stretched states of the spring or bond. Changes in such states required gain or loss of 
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Figure 5. Concept of NIR vibrational spectroscopy 
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energy, which could be analyse by quantum theory for determining the specific energy levels 

that are possible for a particular vibration. Such gain or loss of energy is related to NIR 

spectroscopy equipment detection features and their analytical chemical applications, since 

molecules are selective in the electromagnetic radiation absorbed.  

For changing the vibrational state of a molecule, the energy of the photon must be equal to 

the energy difference between two vibrational states. The two main modes of molecular 

vibrations (Burns and Ciurczak 2008) are: stretching (a change in bond length) and bending 

(a change in bond angle or a change in the location of a group of atoms in relation to the 

remaining part of the molecule). Four types of bend are recognised: scissoring and rocking 

(in-plane bending modes, symmetrical and asymmetrical, respectevey); wagging and 

twisting (out-of-plane bending modes, symmetrical and asymmetrical, respectively). 

Molecules have a finite number of possible vibrations and therefore molecules have 

characteristic transition profiles.  

Indeed, the former example of the harmonic vibration model does not explain the nature of 

real molecules within complexor non-complex matrices, because it does not take into account 

changes in potential energy due to bond approach (Coulombic repulsion) or separation (near 

the breaking point). “Althogh bonds are elastic, they do not obey Hooke’s Law exactly” 

(Kalberg, 2006).  Therefore, the anharmonic oscillator model is known as more precise for 

explaining vibrational spectroscopy of real molecules. The number of transitions levels or 

vibrational quantum numbers (V) in Figure 5, are called bands. Fundamental vibrational band 

refers to transitions from v=0 to v=1, overtone band from v=0 to any level greater than 1, 

combination band from v=1 to any other level (Williams et al. 1987).   

Two main conditions favour absorption of IR electromagnetic radiation by a molecule:  a 

change in the dipole moment because of vibrational movements or mode and that the energy 

of the incident radiation must match the difference between the two energetic levels. In 

relation to the absorption intensity this will increase with anharmonicity linked to difference 

in atomic masses of the bonded elements. This behaviour has been exemplified with the 

strong absorption of such bonds as C-H, N-H and O-H, compared to the less intense 

absorption of C=O and C-C (Williams et al. 1987).   
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Briefly, main chemical factors affecting NIR absorption are therefore (Williams et al. 1987): 

 

The functional group effect: It is the most dominant effect since it explains much of 

the vibrational nature. As already has been mentioned, vibration can be depicted as 

oscillations of atoms through their bonds within a particular molecule. Then the 

energy required for vibration (E) could be analysed by Planck–Einstein relationship 

or the Planck equation (Equation 1):  

 

𝐸 = ℎ𝜈 =
ℎ

2𝜋 √
𝑘

𝑚1𝑚2
𝑚1 + 𝑚2

 

 

Where k is the force constant of the bond strength, m is masses of atoms, h the Planck 

constant (6.6×10−34 J.s) and v the photon frequency (s-1). 

Equation 1 

 

According to equation 1, the fundamental vibration frequency increases with a 

reduction of atomic masses. Absorption of some common functional groups are 

shown in Figure 6. For instance, the first overtone bands for C-H stretching are at 

higher frequencies than those for N-H because the nitrogen atom is heavier than the 

carbon atom. 
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Figure 6. NIR bands assignment 

 

The neighboring group effect: As shown in Figure 6, there is no assignment of a 

functional group to a particular wavelength but rather a frame. It is caused by the fact 

that molecules can be influenced by the identity of a neighboring functional group, 

particularly if it is strongly electron donating or withdrawing. This neighboring 

functional group can then affect the bound strength or the dipole moment of the main 

functional group of interest. 

 

Hydrogen bonding: It does not involve a composition change though can have a 

strong influence in the spectrum. It is formed when a hydrogen atom, is attracted to a 

pair of electrons. The most common hydrogen bond donor groups are -OH and -NH 

mainly, though there are diverse accepting groups.  

 

Macroscopic effects: The structure of the material may strongly influence absorption. 

The crystalline or amorphous nature of a material represent different molecular 

environments and thus different vibrational movements. Moreover, there is 

phenomenon called phase separation which involve the segregation of molecules into 

microscopic domains, such as micelles or aggregates. These domains have particular 
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interactions between functional groups, which are not the same as in the main bulk 

material.  

 

NIRS as an absorption spectroscopy based also on the Bouguer-Lambert-Beer law (BLBL), 

relates the attenuation of light to the vibrational properties of the material through which the 

light is travelling, as shown in Equation 2: 

 

𝐴 = log
𝐼0

𝐼
= Ԑ ∙ C ∙ 𝑙  

𝑊ℎ𝑒𝑟𝑒 𝐴 𝑖𝑠 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒, 𝐼0 and 𝐼 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑎𝑛𝑑 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑙𝑖𝑔ℎ𝑡  

Ԑ  the molar absorptivity, C concentration (in mM) 

and 𝑙 𝑡ℎ𝑒 𝑜𝑝𝑡𝑖𝑐𝑎𝑙 𝑝𝑎𝑡ℎ 𝑙𝑒𝑛𝑔ℎ𝑡 (𝑖𝑛 𝑐𝑚) 

 

Equation 2 

NIR spectra represent the first outcome of NIRS for analytical purposes. For instance, Figure 

7 is the spectrum of a biscuit sample that obviously has different components so this spectrum 

contained hundreds if not thousands of different absorptions related to different vibrational 

movements though they all are contained in a single spectrum containing only some few 

broad bans.  
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Figure 7. Spectrum of biscuit dough with the main absorption bands identified 

 

All these phenomena on NIR spectroscopy may look overwhelming and give the impression 

of unfeasibility for practical implementations. However, applications of NIR spectroscopy is 

generally reported regarding analytical complex matrices. The success of NIRS relies on the 

fact that spectral complexity refers to the overall spectrum, while the validity of analytical 

methods is mainly based on detecting relevant variability in spectra. In this way, although 

the vibrational phenomena encoded within spectra is highly complex, generation of NIR 

calibration methods are feasible. However, such methods are often empirical in nature due 

mainly to the impossibility of totally isolating information of the compound of interest from 

the rest of the matrix information. Therefore, analysis of the nature of the matrix as well as 

the calibration method development require efforts in order to properly use relevant spectral 

variability ensuring that such variability actually characterizes the matrix in term of chemical 

composition with the highest possible confidence.  

 

  



1. BACKGROUND 

1.2 Near Infrared Spectroscopy as a PAT monitoring tool 

 

 

28 

 

1.2.1.2 Cell culture and NIR analysis 

 

In contrast to single component spectroscopic analysis, biopharmaceutic cell culture is a 

complex and challenging matrix, where absorbance/transmittance of light is not the only 

phenomena. There is a strong change in the matrix due to the progression of the cell culture 

process, involving chemical changes, for example due to the metabolism of cells 

(consumption of substrates, synthesis of products and by-products) and physical changes due 

to scattering compounds (mainly cells, cell debris, among others). 

Culture media for cell culture is complex, particularly for animal cell culture. Nowadays, 

synthetic media, usually classified depending on their supplements: serum‐containing media, 

serum‐free media, protein‐free media, and total chemically defined media (Yao and Asayama 

2017) are preferred for sanitary reasons. Undefined ingredients in culture media are 

particularly challenging since they reduce the reproducibility of kinetic profiles of cell 

cultures and may require more effort to use spectra in a predictive manner. Furthermore, this 

initial variation impact on cell physiology may cause slight differences in by-product 

concentration in culture media. This is of great concern since molecular vibrations are also a 

function of the presence of other molecules adjacent to vibrating bonds. Thus, initial 

variability is accumulated through the cell culture process, which complicates the use of 

spectra for monitoring purposes. Moreover, in in-situ mode there may be by-products capable 

of producing biofilms on probes. All these non-ideal phenomena in cell culture processes, 

related to chemical variability, must be considered for proper use of spectra.  

Physical variability within cell culture processes are also of great concern since it strongly 

affects the produced spectra. The most relevant phenomenon is light scattering, particularly 

due to cells, cell debris, protein aggregates, among others. This is mainly a function of two 

properties (Næs 2004): the number of light-surface interactions (size and shape of particles) 

and differences in refractive indices.  

Light scattering alters the intensity of light absorbance/transmittance and subsequently the 

calculated concentration of the absorbent species; modeling scattering may become 

extremely difficult because of random variation of size and shape of particles in culture 

media, so it is essential to separate physical scattering effects from chemical vibrational light 

absorbance effects for developing proper spectra to be used in prediction. Light scattering 
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usually comprises three principal effects: multiplicative effect, additive effect and 

wavelength-dependent effect.  

In addition to chemical and physical variability, cell line variability is also of concern. Cell 

variability may be from genetic or physiological origins, causing process yield impairments. 

Although it may be controlled to some extent by proper cell banking, during expansion of 

subcultures for production scale-up, there can be a loss of cell-specific productivity gradually 

or precipitately in only a few generations (Kim et al. 2011). This fact is particularly of great 

concern for long-term cell culture processes (Bailey et al. 2012) such as fed-batch, continuous 

and perfusion cultures. This cell line variability is also more evident for plant cell suspension 

culture where the proliferation nature, in the form of cell aggregates, may force 

biopharmaceutics production by sensitive cell lines into somoclonal variation (Torrey 1975; 

Deus-Neumann and Zenk 1984) or even into polyclonal cultures (Nocarova and Fischer 

2009).   

Although several studies in academia have shown successful application of NIR technology 

for monitoring cell cultures, its application in industry has been limited to production 

bioreactors (Jenzsch et al. 2017). This could likely be explained by limited variability in 

terms of raw material (Jenzsch et al. 2017), inoculum variation and also by some limited cell 

line instability seen in cell culture runs performed in academia, in comparison with variability 

commonly seen in industry.  
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1.2.2 Chemometrics for monitoring cell cultures using NIRS: scattering effects 

 

Chemometrics as a discipline is relatively new; the term was coined in the 1970’s and it was 

strongly related to scientific computing and multivariate statistical methods. Chemometrics 

main issue is the analysis and interpretation of instrumental data, which also include 

application of computational algorithms to handle data. Perhaps the major application of 

chemometrics is calibration, where one type of measurement is used to predict, calculate or 

estimate the value of a parameter, such as CPP or CQA. Process chemistry needs were 

perhaps the main motor for chemometrics development since a process chemist might have 

wished to monitor the quality of products (hydrocarbon compositions in refineries, among 

others) on a continuous basis by spectroscopy, then corrective action could immediately be 

taken if deviations from accepted limits were detected (Brereton 2007).  

Briefly, a multivariate calibration could be seen as resolving the relationship [Y] = [M] [X], 

[Y] representing a concentration value set of a compound to be explained, and [X] a spectrum 

set of the corresponding culture media as an explanatory variable. Then once [M], a regressor 

expression representing the relationship between spectra and concentration, is solved, the 

calibration can be used for estimating the concentration value (y) at certain point using only 

a spectrum (x) each time the NIR analyzer performs a culture media scanning. There are 

several regression techniques for solving [M], such as Principal Component Regression, 

Partial Least Squares Regression, among others. Though regression is a critical phase for 

calibration, it comprises several stages that requires continuous enhancement; it is usually a 

loop process during model development and routine validation (Burns and Ciurczak 2008). 

Because of the dynamic nature of cell culture, there must be regression analysis between the 

columns of [X] (absorptions at different wavelengths) and rows (representing different 

samples). Samples are taken from different stages of cell culture progression; not only a 

particular compound concentration varies, but also the scattering nature of culture media. As 

calibration is often focused on concentration estimation, there is usually a previous stage for 

management of scattering effects within spectra of different samples. This management is 

performed by analysis and correction of spectra by techniques called spectral pre-treatments. 

The objective is to eliminate or minimize physical variability unrelated to the property of 
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interest, such as concentration, so that changes in spectra due to chemical information could 

be more effectively modeled. 

The scattering effects in NIRS (Figure 8) are often summarized as: 1) Additive, 2) Additive 

and Multiplicative, and 3) Additive, multiplicative and Wavelength-dependent effects.  

 

 

Figure 8. NIR spectra with scattering effects: A Spectra without scattering effects 

(replicates are perfectly overlapped). B Spectra with multiplicative (simple baseline offset) 

and additive (spectral scaling by a given factor as shown in the peaks) scattering effects. C 

Spectra with additive, multiplicative and wavelength-dependent (nonlinear baseline shift) 

scattering effects. 

 

Scattering is a complex phenomenon and could be linear or non-linear, making it difficult to 

minimize or remove. Its correction can be made through explicit and implicit scatter 

correction, the former by particular spectra pre-treatment and the latter by the regression 

itself, which can compensate for unknown scatter variation at the expense of increasing 

model complexity. However, common linear regression methods (PCR/PLSR) are not 

effective for accommodating the impact of scattering, particularly multiplicative scattering 

(Martens et al. 2003). To minimize the impact of scattering effectively, explicit correction 

through appropriate data pre-treatment is needed. 

Spectral treatment is not a trivial step when building calibration models. Although selection 

of best spectral pre-treatment is usually performed by assessing which pretreatment improves 

model performance by comparison with subsequent models, an approach that must be used 
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with care since it could also reduce the compound signal. Therefore, analysis of main 

scattering effects should firstly be performed, and primary selection of pretreatments 

undertaken; subsequent trial and error schemes would likely enhance model performance 

with better chances. The most common pretreatments are the use of spectral derivatives, 

spectral truncation (ST), and baseline corrections such as Standard Normal Variate (SNV), 

Multiplicative Scatter Correction (MSC) and Extended Multiplicative Signal Correction 

(EMSC). 

Derivatives can resolve peak overlapping and enhance the resolution of spectra; they can also 

eliminate baseline drifts between samples though there could be noise enhancement which 

may complicate interpretation of spectra. Main tuning options for derivatives are specified 

gap distance, and Savitzky-Golay polynomial order fitting. SNV is basically an autoscaling 

of the rows instead of the columns of the spectral matrix; correction is performed individually 

and does not need data from all other spectra. MSC is often used for baseline offsets and 

multiplicative effect corrections. MSC regresses a measured spectrum against a reference 

(usually the mean of spectral matrix) and then corrects the measured spectrum using the slope 

and intercept of this linear fit. Wavelength-dependent light scattering variation is difficult to 

remove using either SNV or MSC. EMSC has been proven useful for management of such 

scattering effects. It is intended to separate physical light-scattering effects from chemical 

absorbance effects. ST is based on the fact that there may be spectral regions containing, or 

not, information of a particular compound. Only those closely related to compounds are used 

for further calibration. ST can bring several advantages such as eliminating unrelated 

variables and noise, more robust models with fewer components, among others. However, it 

requires previous knowledge of these particular regions or the use of iterative regression 

analysis (Huang et al. 2010).  

Analysis of spectra is essential for building a proper NIRS monitoring procedure since it 

represents half of inputs for the regression method while the rest is compound concentration 

data. Once both data have been properly analyzed and verified, then the calibration model 

can be built using any regression method, briefly described in next sections below.  
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1.2.2.1 The calibration method 

 

The final aim of an NIR method is to perform routine chemical analysis for controlling 

processes based on NIR spectra. Thus, multivariate techniques must be used to produce 

calibration methods. Although the calibration process may look basic, it becomes quite 

complex when dealing with biological matrices with overlapping and interfering bands, 

scattering effects, among others. It requires adequate and multidisciplinary knowledge of 

NIR technology since sophisticated regression methods, proper sample selection and design, 

instrument standardization and scatter correction, among other issues, may be needed (Burns 

and Ciurczak 2008).   

In the case of cell culture processes, the first step for calibrating a method should address the 

design space, defined as the multidimensional combination and interaction of process 

parameters that have been demonstrated to provide quality assurance. Thus, calibration 

samples must address variability and all possible scenarios during routine control of 

processes to assure medicine quality. This could be an extremely difficult task considering 

the nature of cell culture-based processes. In this way, diverse options may be undertaken for 

preparing calibration samples with some confidence, for instance, by including the full range 

of compounds concentration as evenly distributed as possible while also considering a 

uniform matrix distribution. The calibration method would thus have been trained using 

samples representing the nature of samples expected during process routine analysis.  

Once the nature of the calibration set has been established in term of process variability, 

caution must be also taken in off-line analysis, for instance, when calibrating for protein in 

biological samples a Kjeldahl procedure could be used as primary method for providing 

reference values. However, since NIR spectrum include information of peptide bonds 

directly, but not of reduced nitrogen, the NIR calibration procedure values would never 

perfectly agree with off-line data. Another example is about matrix interaction differences 

with concentration changes as the refractive index of liquids often change with concentration, 

which is particularly important when using volumetric or gravimetric techniques (Workman 

2008).  

According to the “garbage-in, garbage-out” adage, these facts must be carefully considered. 

If chemical and spectral calibrations sets lack quality and rigor, model performance would 
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be poor. Therefore, proper collection of samples representing the population for routine 

analysis is perhaps the most critical step during calibration. The analysis of calibration 

samples is also critical, for example for detecting outliers, data points that differ significantly 

from other observations due to variability in the NIR measurement (NIR instrumental or 

spectral aberrations) or experimental error (off-line analysis). Criteria for selecting outliers 

are often subjective and require expertise in both cell culture process and chemometrics prior 

to discarding any samples from the calibration set. Principal Component Analysis (PCA) is 

often used for analyzing spectra and detecting outliers in small Principal Component (PC) 

space. The aberrant variability of outliers can then be detected through two main phenomena: 

a large PC value, and a large residual value (Q).  

The Hotelling's T2 distribution can be performed at some confidence limit (i.e. 95 % or 99 

%) seeking if there is any sample with PC values of different populations not corresponding 

to the calibration sample main population. This approach can also be performed for Q-

residuals. Both phenomena (the Hotelling T2/Q-residual criterion) can be simultaneously 

used to infer if the calibration sample is actually an outlier provided the calibration sample 

failed in both cases (Burns and Ciurczak 2008). 

As formerly stated in section 0, calibration models are not totally causative but are also 

empirical in nature. Therefore, their performance must be evaluated to ensure a high level of 

confidence during routine analysis. Consequently, the main calibration sample is usually 

partitioned into a calibration set and a validation set. The calibration model is generated 

through multivariate statistics, which include regression itself and spectral pre-treatment for 

scattering effects. The confidence level of calibration is often evaluated through the 

validation set. The validation set must also consider all variability to ensure proper 

performance during routine analysis. Finally, successful calibration models are launched for 

routine analysis; during this period, models are also monitored to ensure the model validity 

and modified if required. The main steps for building a calibration method are summarized 

in Figure 9.   
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Figure 9. Flow chart for calibration (Workman 2008) 

 

As can be noted from Figure 9, the main core of calibration is regression using multivariate 

analysis. Briefly, a multivariate calibration could be seen as resolving the expression Y = 

M.X + Error, Y representing a set of compound concentration values and X a spectrum set 

of culture media. Then the expression can be solved for M so that it could be used as a 

regressor parameter to estimate or predict particular concentration values (y) using only a 

spectrum (x). There are plenty of regression alternatives to solve M, each one with particular 

benefits and drawbacks. There are three main regression methods perceived as classic 

methods for spectroscopic data: Multiple Linear Regression (MLR), Principal Component 

Regression (PCR) and Partial Least Squares Regression (PLSR). MLR has perhaps been the 
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most used regression method due to its simplicity and efficacy, analysing linear correlations 

between independent variables (absorptions) and a single dependent variable (compound 

concentration). However, its major constraint is its inability to handle collinearity where 

some of the independent variables are highly correlated as in NIR spectra. Moreover, as it is 

basically a system of polynomial equations, it then requires at least the same number of 

calibration samples as independent variables (absorptions at different wavelengths). This is 

of great concern since new NIR analysers can perform spectral scanning with hundreds or 

thousands of independent variables, which could lead to an undetermined nature of the 

regression (inconsistent regression or with infinitely many solutions). Therefore, PCR and 

PLSR which firstly reduce collinearity and the number of independent variables, are mostly 

used in NIRS applications. The principles of PCR and PLSR methods are discussed in 

sections 0 and 0, respectively.  

An ideal calibration model would predict or estimate a reproducible, accurate and reliable 

concentration value of a compound within the analyzed matrix. It should be robust and 

properly handle endogenous instrumental variation, background interferences, temperature 

effects and at the same time, it should be quite sensitive to concentration changes. Although 

the regression can be solved for perfectly paired y values with spectral changes, the main 

purpose of calibration is to obtain a general mathematical expression allowing accurate 

estimation of concentration in any sample during the processes, a model property called 

model fitting or generalization. In other words, ideal models must extract the nature of the 

processes using only a small sample of it, which is the calibration set. This property is shown 

in Figure 10, where calibration samples are represented as points in two dimensions (time 

values and concentration values) and three different regression models with different fitting 

natures are shown. Underfitting and overfitting models did not capture the changes well, 

while the model with good fit properly captured the nature of the process. As the model with 

good fit is likely to properly pair variability of the process, it is likely to be more robust and 

perform more accurately during routine analyses.    
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Figure 10. Fitting of a model 

 

The capacity of a regression technique for matching values relies on the nature of the 

regression method and the relationships between dependent variables (compound 

concentration) and independent variables (spectra). Such relationships may be linear or 

nonlinear, which would require different regression treatments for pairing data. Moreover, 

there are two main types of nonlinear relationships: univariate and multivariate non-

linearities (Næs 2004). As shown in   

Figure 11, there can be strong nonlinear relationships between variables X1 and X2 on one 

side, and with y on the other. This is called univariate nonlinearity as y could be set as a 

function of both X1 and X2, then the relationship between X1-X2 and y becomes linear. As 

univariate nonlinearity can be transformed into multivariate linearity, this phenomenon can 

easily be resolved with linear regression approaches. In most applications for vibrational 

spectroscopy calibration, the multivariate calibration model is linear; this means that the 

calibration model for each component is mainly based on an equation type represented by 

Equation 3: 

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 =  𝑏0 + ∑ 𝑏𝑘𝑥𝑘 + 𝑒𝑟𝑟𝑜𝑟

𝑘

𝑘=1

 

Where b are regressor coefficients and x, variables related to absorption 

Equation 3 
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On the other hand, there may be nonlinearity causing a totally nonlinear relationship between 

y and all the x-variables at the same time (multivariate non-linearity) and would then require 

nonlinear regression approaches (Perezmarin et al. 2007). The principal strategies to handle 

nonlinearity and to reduce the estimating errors are sophisticated spectral preprocessing, 

adding nonlinear terms to calibration equations, splitting data into subsets and deleting 

variables. Although such strategies may result in efficient calibration models, there may be 

cases where the only possibility to enhance prediction power is simply to try nonlinear 

multivariate calibration models.  

 

  

Figure 11. Nonlinear relationships (Næs 2004) 

 

The ideal regression model should be as precise and accurate as possible; thus, evaluation 

criteria are essential not only for choosing between several alternative calibration models, 

but also on selecting the structure of the multivariate calibration technique such as number 

of latent variables for PLS, principal components for PCR, among others. Comparison of 

calibration models is not a trivial task and it could become difficult to compare in detail, 

especially when calibration models of different natures are involved. Perhaps the most robust 

and employed criterion for evaluating the acceptance of calibration models are several 

standard methods (Burns and Ciurczak 2008) such as the coefficient of determination (R2), 

the root mean squared error (RMSE), the standard error of prediction (SEP), among others, 
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using calibration set, cross-validation set or external validation set approaches. The use of 

these parameters under different set approaches, is intended to assess how the calibration will 

generalize to an independent data set. Analysis of calibration performance with a calibration 

set approach only shows if the regression model can pair calibration spectra and 

concentration values, while using cross-validation set and external validation set approaches 

analysis the performance more rigorously. The validation set approach mostly is the best way 

to evaluate if the calibration procedure has properly assessed the cell culture process 

phenomenon since only independent-of-calibration samples are used. On the other hand, the 

cross-validation set approach involves partitioning the calibration data into complementary 

subsets, performing the analysis on one subset (the training set), and validating the analysis 

on the other subset (the testing set). Multiple rounds of cross-validation are performed using 

different partitions, and the validation results are averaged over the rounds as shown in Figure 

12, to finally give an estimate of the predictive performance of the calibration model. Though 

it could be perceived that cross-validation would contribute less to confidence analysis than 

by using an external validation set, it is quite helpful since it analyses the whole variability 

extension of the cell culture process through the spectral calibration set, while the use of an 

external validation set could likely depict only a small fraction of the cell culture process 

variability.  

 

 
Figure 12. Cross-validation approach 

 



1. BACKGROUND 

1.2 Near Infrared Spectroscopy as a PAT monitoring tool 

 

 

40 

 

All former standard methods are aimed at evaluating the acceptance of models from different 

perspectives, for instance, accuracy, precision and linearity. Accuracy refers to the difference 

between model predicted and actual y-values, while precision refers to the difference of 

repeated measurements, and linearity to the capability of a model to obtain results directly 

and linearly proportional to actual concentrations. Perhaps the most common standard 

methods for evaluating the model performance for cell culture issues is the root mean squared 

error (RMSE) either using external validation sets (usually reported as RMSEP) or during 

cross-validation (RMSECV) for accuracy, and R2 for linearity, which are calculated using 

equations 4 and 5 (Workman 2008): 

 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑁𝑝

𝑖=1

𝑁𝑝
 

2

 

Equation 4 

𝑅2 =
∑ (𝑦̂𝑖 − 𝑦̅𝑖)

2𝑁𝑝

𝑖=1

∑ (𝑦𝑖 − 𝑦̅𝑖)2𝑁𝑝

𝑖=1

 

Equation 5 

 

Where 𝑦̂ is the estimated concentration value, 𝑦̅ the mean y value and 𝑦𝑖 a singular 𝑦 value 

for the i-th sample, and 𝑁𝑝 the number of calibration samples 

 

Other important criteria when evaluating a calibration model are the grade of uncertainty of 

a prediction and the detection limit. The uncertainty of the model is usually characterised by 

the confidence intervals or confidence limits of the calibration; this interval or limit contains 

the unknown y-value (concentration) that we want to estimate with a high probability (≥ 

95 %). Due to the nature of the calibration process, theoretical values are usually replaced by 

empirical correlations, one of the most employed being to establish a confidence interval of 

± 2 RMSEP, approximately 95 % confidence interval, when residuals from a NIR calibration 

is close to t-distribution (Næs 2004). The detection limit is the lowest quantity of a substance 

that can be distinguished from the blank. In NIRS applications, it can be loosely 
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approximated as three times the SEP or twice the RMSE, an approach with approximately 

99 % confidence that difference in y-value between one sample and the blank is correctly 

determined (Workman 2008).  

Comparison of different calibration models is usually performed by comparison of 

performance variables such as RMSEP or R2. Simple model comparisons employ validation 

sets (cross validation sets, internal validation sets or preferably external validation sets) and 

performance variables are compared, then the best values are selected (Balabin et al. 2007). 

However, this simple approach lacks significance of the differences and the effect of the 

validation sample remains unknown.  

A good methodology to compare calibration models should consider not only prediction 

ability, but also aspects such as interpretation issues, outlier detection, and ease of use, among 

others. As it may become difficult to cover all these issues, the great majority of authors have 

focused on prediction ability. Some statistical methods for significance difference in 

prediction may be employed such as an ANOVA test, a sign test, a Wilcoxon test and a 

Friedman test, among others. Multiple comparison methods such as Tukey tests are feasible 

when comparing several calibration methods (Næs 2004).  

Great attention to comparison issues in spectroscopic calibration models have been paid, 

which concluded that the most suitable method is the two-way ANOVA test with post-hoc 

Tukey test (Cederkvist et al. 2005). An alternative to the ANOVA test is a Friedman test, a 

preferred alternative when the assumption of normality is not met. In contrast to the ANOVA 

test which uses raw observation values, the Friedman test uses a data rank table to calculate 

the statistic, thus the test is based on the squared differences between the sums of the ranks 

of each treatment from the overall mean rank sum (Forthofer and Lee 1995).  

When a confidence model is finally used in routine analysis, it must also be monitored to 

assuremodel validity through time and process variations. Validation schemes will depend 

on company politics and regulatory issues, though it is a common approach to use Shewhart 

charts with warnings and action limits at particular thresholds. Common rules for action are 

seven points in a row on the same side of the zero-line and one point outside the action line, 

among others (Næs 2004).    
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1.2.2.2 Principal Component Regression 

 

Principal component regression intends to reduce collinearity by PCA compression of the X 

input matrix, and only PCA scores are employed as independent variables to build the model. 

Næs and Martens (1988) have described the PCR algorithm with focus on the NIR spectra 

context and part of their work is summarised here as an introduction to PCR calibration 

generation. The first step is to perform X matrix decomposition into principal component 

scores as described in equation 6:  

X = TPT + E  

Equation 6 

Where T is the score matrix, PT the transpose matrix of loadings and E the residual matrix. 

Once the X matrix has been mapped into the score space and the number of principal 

components chosen, it can be represented by the score matrix to calculate the model 

according to equation 7: 

 

Y = TB + E 

Equation 7 

where Y is the variable matrix (in this case the variable concentration matrix) and B the 

regressor matrix subject to be calculated by ordinary least squares as indicated in equation 8: 

B = (TTT)−1TTY 

Equation 8 

Once regressors matrix is calculated, the model is generated, and problem samples may be 

calculated employing the models. To calculate the variable concentration, the spectral data 

is transformed into the principal component space and scores matrix of the samples (T*) is 

determined from spectra (X*) and loadings matrices as shown by Equation 9:  

T∗ = X∗P 

Equation 9 
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Then the regressor matrix, calculated in the calibration process, is employed with the problem 

sample score matrix to determine variable concentration according to the PCR calibration 

equation depicted by Equation 10:  

Y = T∗B 

Equation 10 

 

 

Collinearity problems completely disappear with PCR models since the PC are orthogonal 

and only a few PC are required to explain the majority of calibration set variability. However, 

there is one major constraint with PCR: the regression equation will consider all spectral 

variables (because each PC is a linear combination of the several absorptions at different 

wavelengths) and PC correlated to global process variability rather than to variability related 

to the variable being predicted (compound concentration). Consequently, new approaches 

taking this fact into consideration have been developed such as PLSR.  
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1.2.2.3 Partial Least Squares Regression 

 

The basic algorithm for PLS regression was proposed by Wold et al. (1984). Nowadays, PLS 

regression is perhaps the most employed multivariate regression method, particularly in the 

NIR context. As with the PCR method, PLS is based in a reduction variable process for 

treating collinearity. In contrast to PCR which only reduces X-spectral matrix and then relates 

reduced X-matrix with Y-matrix, PLS finds components from X matrix that are also relevant 

for Y. PLS models with the constraint that these components explain as much as covariance 

between X and Y as possible and regression of matrices are then performed according to 

equations 11 and 12 (Höskuldsson 1988):  

X = TPT + E 

Equation 11 

Y = UQT + F 

Equation 12 

where X and Y are spectral and concentration matrices respectively, T and U are the pseudo-

score matrices, P and Q are the pseudo-loading matrices and E and F are the residual matrices. 

Matrix decomposition of X and Y matrices are not independent, thus an internal relationship 

between the scores of X and Y are generated according to Equation 13: 

U = BT 

Equation 13 

where U is the pseudo-scores of Y to be calculated, T the pseudo-scores of X, and B the 

regressor matrix. Once the regressor matrix has been determined, calculation of y-

concentration value from the problem sample may be calculated according to the PLS 

calibration equation depicted as Equation 14: 

Y = T∗BQT + F 

Equation 14 

where T* is the pseudo-score matrix of the problem sample, B the regressor matrix, QT the 

pseudo-loading matrix of the model and F the residual matrix. 
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1.2.2.4 Locally Weighted Regression 

 

Locally weighted regression (LWR), also called LOWESS (LOcally WEighted Scatter-plot 

Smoother) was inspired by time series methodology where data points are smoothed by local 

fittings of polynomials, but the name of LWR and its application as a regression technique is 

attributed to Cleveland and Devlin (1988). In contrast to classic parametric multivariate 

calibration which generates a regression function considering all calibration points (Figure 

13-A), LWR defines a neighborhood in the space of the independent variables that contains 

the sample to be predicted (Figure 13-B); each point of the neighborhood is weighted 

according to its distance from the sample to be predicted. Points close to the sample to be 

predicted are given more importance or weight, points far from the sample to be predicted 

are given less weight (weights represented by contour thickness of local calibration samples 

in Figure 13-C). A regression function is then generated employing local calibration samples 

and their weights (Cleveland and Devlin 1988). 

 

 

Figure 13. Intuitive concept of LWR. A Global calibration samples. B For a new query 

point (red cross), only a local set of relevant and near calibration samples are selected (blue 

circles). C calibration is generated with only local samples and weighted PLSR 

 

In addition to the generation of the regression function for the neighborhood region, LWR 

requires additional parameters to be built, such as those that determine the neighborhood 

region and the weights of the points. The neighborhood region is determined by a distance 
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function and specified limit. Euclidean distance has been employed for LWR mainly in 

geography contexts, also in NIRS regression problems only when NIR spectra have been 

mapped into principal component space (Naes et al. 1990; Naes and Isaksson 1992; Centner 

and Massart 1998). Næs (2004) have also proposed several approaches related to the use the 

Mahalanobis distance in the principal component space. Since distance as a delimiting 

criterion may be inappropriate when lacking vast calibration samples in a wide calibration 

space, several authors have employed distance criteria in terms of a number of near 

calibration samples (Naes and Isaksson 1992; Næs 2004).   

Once the local area is determined, each calibration point must be weighted for building the 

regression equation. Perhaps the most employed weight function is the LWR Cubic weight 

function proposed by Cleveland and Devlin (1988) and employed by the great majority of 

studies, defined below by Equation 15: 

𝑤𝑖(𝑥𝑗) =  𝑊 (
𝛿 (𝑥𝑗 , 𝑥𝑖)

𝑑(𝑥𝑗)
) 

Equation 15 

where  

𝑊(𝑢) =  {
(1 − 𝑢3)3        𝑖𝑓 𝑢 ≤ 1
0                        𝑖𝑓 𝑢 > 1

 

 

𝛿 (𝑥𝑗 , 𝑥𝑖): 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑠𝑎𝑚𝑝𝑙𝑒 𝑗 𝑎𝑛𝑑 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖 

𝑑(𝑥𝑗): 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑛𝑣𝑜𝑙𝑣𝑒𝑑 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 

 

As could be noted, the weights will be large (close to 1) for xi close to xj, and small (close to 

0) from xi far from xj. Once the region and weights have been determined, the regression 

function in the local region is generated using weighted least squares, and the y-value for xj 

is calculated. Although LWR Cubic weight function is perhaps the most employed weight 

function, various authors have proposed other functions such as the uniform weight function 

(Naes and Isaksson 1992; Centner and Massart 1998).  
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The nature of LWR makes it attractive to employ the general framework of least squares in 

order to model complex processes for which no theoretical model exists. On the other hand, 

as LWR is a local model, it requires fairly large and densely sampled data sets to produce 

efficient models, which increases experimental costs and makes it sensitive to outliers.  

According to Naes and Isaksson (1992), LWR may reduce prediction error up to 15 % with 

respect to global and lineal multivariate regression. (Centner and Massart 1998) have worked 

on LWR parameter optimization (distance function, weighting function, nature of calibration 

sets, among others) for improving model prediction power and simplicity to reduce the 

requirements of computer processing power. Their results showed that for non-lineal 

heterogeneous data sets LWR yielded better results than global PLS and their work also 

showed that in extrapolation prediction cases, the use of LWR resulted in error reductions of 

up 75 % in reference to PLS prediction errors, thus, minimizing the risk of losing accuracy 

when non-linearity is presented in real-time process monitoring. One drawback of LWR is 

that only distances in independent variable space (spectral space) are considered. Wang et al. 

(1994) developed a new approach of LWR called LWR2, which included distance in the 

dependent variable space (chemical space).  

Although LWR generates a neighborhood according to the closeness of calibration points to 

prediction samples in spectral space, they may not necessary be close in chemical space; 

LWR2 considers this issue and aims to be a more robust calibration technique. Wang et al. 

(1994) have proposed the following distance function which includes a distance function 

(Equation 16) in the spectral space (as LWR does) and a function corresponding to the 

distance in chemical space (concentration values):  

𝜌𝑖𝑝 =  𝛼𝜌𝑌𝑖𝑝 +  𝛽𝜌𝑋𝑖𝑝 

Equation 16 

where  

1 =  𝛼 +  𝛽 

𝜌𝑌𝑖𝑝 =  
⌈𝑦𝑖 − ÿ𝑝 (𝑃𝐶𝑅)⌉

𝛿𝑝
;  𝛿𝑝 =  ∑ 𝜌𝑌𝑖𝑝

𝑁

𝑖=1

;          𝜌𝑌𝑖𝑝
𝑗+1

=  
⌈𝑦𝑖 − ÿ𝑝 (𝐿𝑊𝑅2) 

𝑗⌉

𝛿𝑝
 

𝜌𝑖𝑝: 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖 𝑎𝑛𝑑 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑠𝑎𝑚𝑝𝑙𝑒 𝑝 𝑖𝑛 
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𝑏𝑜𝑡ℎ 𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑎𝑛𝑑 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑠𝑝𝑎𝑐𝑒 

𝜌𝑌𝑖𝑝: 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑠𝑝𝑎𝑐𝑒; 

𝛼: 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑠𝑝𝑎𝑐𝑒 

𝛽: 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑠𝑝𝑎𝑐𝑒 

𝜌𝑋𝑖𝑝: 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑠𝑝𝑎𝑐𝑒 

𝑦𝑖: 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖 

ÿ𝑝 (𝐿𝑊𝑅2): 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑠𝑎𝑚𝑝𝑙𝑒 𝑝 𝑏𝑦 𝐿𝑊𝑅2 𝑚𝑒𝑡ℎ𝑜𝑑 

ÿ𝑝 (𝑃𝐶𝑅): 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑝 𝑓𝑟𝑜𝑚 𝑃𝐶𝑅 

 𝛿𝑝: 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑡𝑜 𝑚𝑎𝑘𝑒 𝑝𝑌 𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠 𝑎𝑛𝑑 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0 𝑎𝑛𝑑 1 𝑙𝑖𝑘𝑒 𝜌𝑋 

𝑗: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

 

As could be noted in prediction samples, the neighborhood in chemical space remains 

unknown since no data of concentration is available, thus it is necessary to calculate it by 

other techniques (PCR, PLS), then an iterative process is launched until convergence. LWR2 

also requires two more parameters to be optimized: contribution of distance measured in 

chemical space (𝛼) and the number of iterations (𝑗). According to Wang et al. (1994), LWR2 

can handle non-linearity and noise in spectral space better than LWR. Moreover, LWR may 

also be used as a convenient platform to include new samples that were collected after 

primary calibration, allowing model adaptation to process changes while maintaining 

expected performance during process conditions (Chang et al. 2001).   
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1.2.2.5 Supported Vector Regression 

 

A relatively novel alternative for nonlinear modelling of NIR spectra is SVR (Cogdill and 

Dardenne 2004). The main difference of SVR from other typical regression methods is that 

its objective is not merely to reduce the fitting error but to fit the error within a particular 

threshold (±ε). Dealing with calibration sample sets with complicated relationships between 

spectra and compound concentration may be an extremely difficult task for classic regression 

methods. For instance, the calibration sample distribution in Figure 14-A cannot be separable 

or regressed based on concentration, using only two dimensions. However, if data is properly 

mapped into a higher dimension space (called feature space), it could be separated by a 

regressor or hyperplane taking into account compound concentration as shown in Figure 14-

B. In this case a regressor with a 3D spiral shape was generated (red line in Figure 14-B), 

requiring the addition of one more dimension, but it can occurr that hundreds or even 

thousands of dimensions may be required for proper error fitting within a particular threshold. 

A closer look at the hyperplane is shown in in Figure 14-C; this is defined by the support 

vectors (SV), which are the calibration samples in the positive and negative limits of the 

tolerated threshold. The hyperplane is then located in path half-way between positive and 

negative threshold while majority of samples remain in the threshold tube.  

 

 

Figure 14. Intuitive concept of Support Vector Regression. A Calibration set. B Continuous 

classification of calibration samples by a kernel in a higher dimensional feature space. C 

Hyperplane or regressor structure showing the support vectors. 
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The goal of SVR is to generate a regression function, or hyper plane, that has a maximum 

number of calibration samples at most an ε deviation from an actual concentration, and at the 

same time keeping the function as flat as possible (Smola and Schölkopf 2004). The hyper 

plane could be considered as in Equation 17: 

 

(𝑥) = (𝑤𝑥) + 𝑏      

𝑤𝑖𝑡ℎ    𝑤 ∈ X, b ∈ ℝ, and x being a variable related to spectra 

 

Equation 17 

Flatness is then assured by minimization of w, for example by minimizing the norm as a 

convex optimization problem as shown by Equation 18: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 
1

2
|𝑤|2     

Subject to 

𝑦𝑖 − (𝑤𝑥) − 𝑏 ≤ ε      𝑎𝑛𝑑      (𝑤𝑥) + 𝑏 − 𝑦𝑖 ≤ ε          

Equation 18 

 

However, it may not be the case that f(x), which approximates all pairs (xi, yi) with ε 

precision, actually exists. Then a soft margin of slack variables ξi, ξ∗i, are introduced for 

coping with unfeasible constraints of optimization (Equation 19) as stated by Vapnik (Vapnik 

2000):   

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 
1

2
|𝑤|2 + 𝐶 ∑(ξ𝑖 + ξ𝑖

∗)

𝑙

𝑖=1

 

subject to 

𝑦𝑖 − (𝑤𝑥) − 𝑏 ≤ ε + ξ𝑖 ,      (𝑤𝑥) + 𝑏 − 𝑦𝑖 ≤ ε + ξ𝑖
∗    and   ξ𝑖 . ξ𝑖

∗ ≥ 0 

Equation 19 

 

The constant C determines the compensation between the flatness of f(x) and the amount up 

to which deviations larger than ε are tolerated. This general procedure is depicted in Figure 

14-C. As could be observed, SVR is then less vulnerable to outliers since it could properly 

generalize and leave the outliers in the soft margin (closed circle in Figure 14-C). In complex 
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multivariate data optimization, Equation 19 can be solved more easily in its dual formulation, 

which provides the possibility for extending the procedure to nonlinear functions. This could 

be achieved by mapping the xi patterns into some feature space F (Nilsson 1965) as depicted 

by Equation 20: 

 

𝜑: 𝑥 → 𝐹       

Equation 20 

 

Then standard SVR procedure is applied. Mapping into a higher, linear or nonlinear, 

dimensional space, may require exacerbated computational power, thus the majority of SVR 

use implicit mapping by kernels. The most common are linear, polynomial and Gaussian 

radial basis function (RBF) kernels.  

The nature of the calibration set must be considered for properly selecting the kernel (Awad 

and Khanna 2015). The linear kernel is useful in large sparse data vectors with linear 

regularization, the polynomial may fit some soft non-linearity and RBF kernels are general-

purpose, generally applied in strong non-linear regularization or in the absence of prior 

knowledge (Awad and Khanna 2015). This approach could be used for generalizing difficult-

to-fit data in complex systems. As with LWR, monitoring procedure submission could be 

likely cumbersome for relating SVR parameters to specific chemical or physical properties 

of the cell culture, particularly in strong non-linear processes mapped into high dimensional 

feature space.   
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1.2.2.6 Neural Network Regression 

 

Artificial neural networks (ANN) are inspired by biological neural networks. At first, they 

were focused on learning tasks by considering patterns in examples, but now they are used 

in diverse applications, especially for those that require difficult-to-express algorithms. In 

the context of NIRS calibration, ANN are mostly employed under the supervised learning 

paradigm (Naes et al. 1993). The core of an ANN is its basic unit, called the artificial neuron, 

which constitutes the building brick the network use for regression. The structure of a single 

neuron can be observed in Figure 15-A. The most common architectures for NIRS 

calibrations are single layer, multiple layer ANN and recurrent ANN (Figure 15). Since 

correction of PAT-NIRS calibration methods is a serious issue that usually requires official 

approval by regulatory agencies, recurrent ANN are not likely to be employed in the PAT-

NIRS calibration process.   

 

A) B) C)  

 

Figure 15: Artificial neural network structures: A) Single input neuron, B) Three layers 

ANN, C) Recurrent ANN (Hagan et al. 2004) 

 

As can be seen in Figure 15-B and Figure 15-C, ANN could become as complex as necessary; 

however, the main idea of the networks rely on the neuron function (Figure 15-A; (Hagan et 

al. 2004)): The input p (absorbance at specific wavelength) is multiplied by the scalar weight 

(w) to form, one of the terms that is sent to the sum (Σ). The other input is a bias value b (1 

in this case) and then passed to the sum. The sum output, often referred as the net input, goes 

into a transfer function (f), which produces neuron output a. Provided that a simple j multiple 

layer ANN with i inputs is employed, the neural network could be summarised in the equation 

21: 
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𝑦 = 𝑓 [∑ 𝑏𝑖𝑓𝑖(∑ 𝑤𝑖𝑗𝑝𝑗 + 𝑏𝑖1) + 𝑎2

𝐽

𝑖=1

𝐼

𝑖=1

] + 𝑒𝑟𝑟𝑜𝑟 

 

Equation 21 

According to Equation 21 of an ANN representation, w and b are adjustable parameters of 

the neural net; the ANN designer usually chooses the transfer function f. Thus, w and b must 

be tune by some learning protocol (also called learning algorithm) so that the neurons and 

then the whole ANN input-output relationship meets some specific goal (low error of 

prediction). Other parameters to be chosen are the number of neurons, the nature of the input 

data (compressed/uncompressed spectra) and specific neuron connections, among others.  

There are several algorithms for training the networks; perhaps the first approach to 

accomplish this objective was the perceptron learning rule of Rosenblatt (Van Der Malsburg 

1986) and the Least-Mean-Square algorithm of Widrow and Hoff. However, such protocols 

were design to train single layer networks only. To overcome this inconvenience, a learning 

rule called back-propagation was implemented and disclosed in the mid 1980s. Nowadays 

the back-propagation algorithm is perhaps the most widely used technique for training 

multilayer neural networks. Back-propagation calculates the error contribution of neurons, 

and then an enveloping optimization algorithm is used for adjusting the weight of each 

neuron. Technically it calculates the gradient of the loss function and is commonly used in 

the gradient descent optimization algorithm. It is also called backward propagation of errors, 

because the error is calculated at the output and distributed back through the network layers 

(Hagan et al. 2004). There are two main issues about ANN that are of great concern; topology 

and generalization of the network. Topology concerns the network structure (number of 

neurons, layers and connections). A small network may not be enough to fit the data. To 

make it clear Hagan et al. (2004) have given and explanatory example: An approximation to 

equation 22 by and ANNR model is desirable:  
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𝑔(𝑝) =  1 + sin (
𝑖𝜋

4
𝑝)  𝑓𝑜𝑟 − 2 ≤ 𝑝 ≥ 2 

Equation 22 

where i takes the values of 1, 2, 4 and 8. It can be noted that as i increases, the function 

becomes more complex, because it will have more periods of the sine wave over the interval. 

Thus, it will be more difficult for a neural network, with a fixed number of neurons in the 

hidden layers to approximate the function as i increases. 

In Figure 16-A, the capacity of a neural network of one input, three neurons and one output 

(1-3-1) is shown. After proper training, it is clear that there is a limit to how complex a 

function this network can implement, i = 4 in this case. For i > 4, ANN tries to reduce the 

mean squared error between the network response and the function to be modelled, but is 

only able to match a small part of the function. In Figure 16-B, the same function is subject 

to fitting by several ANNs with different sizes and it can be observed how a complex function 

(or task) may require a minimum number of neurons to achieve the objective. This occurred 

because the number of hidden neurons it contained inherently limited ANN capabilities.  

A) B)  

Figure 16: Capacity of ANN according to its size: A) Capacity of an ANN to fit a complex 

function, B) Required ANN size to fit a complex function. Network responses are shown by 

blue lines and black lines represent functions to be fitted by ANN (Hagan et al., 2004) 

 

It could be tempting to employ a large number of neurons, but it may lead to overfitting and 

in ANN context the antonym of overfitting is usually called generalization. In relation to 

NIRS calibration, the training set is to be representative of much larger samples of possible 



1. BACKGROUND 

1.2 Near Infrared Spectroscopy as a PAT monitoring tool 

 

 

55 

 

input-output pairs (spectral data-concentration data), thus it is important that the network 

successfully generalizes the spectra-concentration relationship rather than performing a 

specific regression model for perfect pairing of calibration set data. In   

Figure 17-A, a function g is approximated by a 1-2-1 ANN trained with nine samples (+ 

symbols). The ANN shows good generalization, meaning that if the response of the ANN at 

a value that was not considered in the training set is to be found (-1), the ANN is capable of 

producing an output close to the modelled function. On the other hand, when a larger ANN 

(1-9-1) is employed (  

Figure 17-B) the network might produce an output far from the true response (black line). It 

models the function perfectly only in the training points, meaning that the ANN does not 

generalized well (Hagan et al. 2004). 

 

A) B)   

Figure 17: Generalization of ANN: A) 1-2-1 ANN approximation of a function g, B) 1-9-1 

approximation of a function g (Hagen et al., 2004) 

 

As seen in the former example, there is no guarantee of better performance by only increasing 

the neuron number; this is because as the number of neurons increases, the number of free 

parameters (weights and biases) also increases. A good ANN calibration model must be as 

accurate and as general as possible; thus, ANN generalization is not a trivial task. 

Generalization is mainly performed by different approaches; the most applied techniques are 

early stopping, regularization, global searches and pruning and growing. Pruning and 

growing techniques eliminate or add neurons respectively until good generalization is 
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achieved. Global searches compare all possible network architectures to locate the simplest 

model that explains the data. In contrast to these techniques that try to keep the network 

simple in relation to the neuron number, the regularization and early-stopping techniques 

keep the network simple in relation of the weight magnitudes instead of reducing the neuron 

number (Hagan et al. 2004). 

The concept of early stopping relies on the fact that as the training process progresses, the 

network uses more and more of its weight capacities, thus by increasing the training iterations 

the network becomes more complex. If the training is stopped before the minimum error is 

reached, then the network will effectively use fewer parameters and will be less likely to 

overfit. Regularization techniques modify the sum squared error performance index equation 

to include a term that penalizes network complexity, which forced the resulting function to 

be smooth and then less likely to overfit.  

ANN have been used in the NIRS context as a calibration method by several authors. For 

instance, in latex-ethanol mixtures it has been reported that ANN achieved a reduction of the 

standard error of prediction between 50 % and 75 % compared to PLSR (Borggaard and 

Thodberg 1992). They also found that ANN requires less input data in the form of scores of 

principal component analysis (compared to PCR), providing better stability of ANN models. 

Moreover, the great advantage of ANN relied on the fact that ANN were able to learn non-

linear relationships, which enable performing predictions in extrapolation situations with 

better results. On the other hand, calibration using UV/Visible spectra showed that ANNs 

provide results only slightly better than PLS and PCR only (Gemperline et al. 1991) and 

pointing out the importance of the transfer function, which has a critical role to model non-

lineal relationships. This fact agreed with the results of Naes et al. (1993), which 

demonstrated that ANN based on sigmoid functions gave better predictions. However, it was 

concluded that the performance of an ANN relative to classic lineal methods such as PCR 

and PLS is strongly dependent on the situation under consideration.  
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1.2.3 Synthesis: Near Infrared spectroscopy as a PAT monitoring tool 
 

Monitoring of cell culture processes by in situ spectroscopic approaches is an extremely 

complex task since not only chemical, but also physical and biological data and their dynamic 

must be considered within spectra, including scattering effects for physical information, 

confused relationships between correlated chemical variables (compounds concentrations) 

for chemical information, among other phenomena. Therefore, the use of NIR spectra in a 

predictive manner require sophisticated chemometric tools for building calibration models 

so that process analysers can be suitable PAT monitoring tools. Indeed, analysis of cell 

culture nature suggested that adoption of innovative regression methods, such as SVR, LWR 

or ANNR, could enhance the performance of monitoring by process analysers. However, 

calibration models for cell culture process have mostly been restricted to classic regression 

methods such as PCR and PLSR. This fact could explain why this promising technology has 

not been as widely adopted by the biopharmaceutical industry as first expected. Therefore, 

evaluation of new regression methods that enhance the comprehension of the relationship 

between spectra and cell culture properties, is required for going some way towards the 

implementation of new quality approaches assuring medicine consistency and patient safety.  
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1.3 MONITORING OF CELL CULTURES BY PAT & NIR SPECTROSCOPY 

 

As previously described (section 0), cell culture processes are complex and require relentless 

control for assuring biopharmaceutical properties and patient safety while economically 

maximizing the benefits of processes. There are three main challenges for such monitoring 

and control: the high number of possible critical variables (physical, chemical, biological), 

inherent challenges for their monitoring (instrumentation) and deep process knowledge for 

control strategies. Although cell cultures are actually monitored in terms of several critical 

variables (Claßen et al. 2017) as shown in Table 1, they are mostly restricted to physical 

parameters and processes could be enhanced provided new critical variables be monitored, 

such as biological variables (Clementschitsch and Bayer 2006).    

 

Table 1. Analytical techniques for monitoring cell cultures (Claßen et al. 2017)        
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Critical biological variables are generally monitored by off-line measurements that may not 

be as fast as necessary to properly control the process. The lack of real-time monitoring 

constitutes a major limitation to further optimize the performance of these processes and 

guarantee product quality. Furthermore, sampling implies contamination risk. Consequently, 

in recent years biopharmaceutical companies have been paying increasing attention to the 

development of new techniques for online monitoring of bioprocesses. Therefore, regulatory 

agencies launched the Process Analytical Technology (PAT) initiative for real-time analysis 

of manufacturing stages through innovative process analyzers. The ultimate aim of the 

initiative is to gain deep understanding of process fundamentals, which would allow the 

control of process variability for assuring the Quality Target Product Profile (QTPP). 

Consequently, during the manufacturing process, Critical Process Parameters (CPP) 

affecting product Critical Quality Atributes (CQA) must be monitored and controlled, thus  

maintaining CQA within a particular confidence frame (Jenzsch et al. 2017).  

The PAT initiative enforces the use of in-line process analyzers for monitoring and 

controlling bioprocesses without contamination risks. NIR spectroscopy-based analyzers 

with remote probes are of great interest since the probe may be placed in situ and suitable for 

steam sterilization. Moreover, they may provide multicomponent information in highly 

turbid matrices such as cell culture media. The application of this technology implies 

challenges related to the culture process itself (mixing, cell growth, cell physiology, 

compounds correlation, scattering, among others.) and technical challenges (instrumentation, 

development of calibration methods, among others.) (Cervera et al. 2009). Perhaps the main 

challenge of cell culture monitoring is the high number of possible critical variables (growth 

regulators, enzymes, substrates, byproducts, oligo-elements, products, cells, cell 

physiological states, among others). This could be overcome by proper selection of analyzer 

nature and development of accurate and precise calibration models (Scarff et al. 2006). 

Several studies have been performed for the challenge of cell culture monitoring using 

different modes of operations, cell lines, culture media and calibration strategies as shown in   
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 The great majority have focused on classic parameters such as glucose, lactate, glutamine or 

cells, while product or even product quality in terms of post-translational modifications, have 

received limited attention. The major advance of these studies is to achieve correlations 

within the cell culture process, such as compounds, metabolic rates, among others. They 

recommend using techniques such as compound spiking, or addition of synthetic calibration 

samples for breaking such correlations. However, other authors have pointed out that such 

techniques may increase noise in spectra if such samples are different in term of physical 

status, such as % DO, pH, temperature and culture mixing dynamics. Moreover, as far as can 

be ascertained, all these studies have only used linear regression techniques, such as PLSR, 

for calibration model building. Although there are plenty of regression techniques for 

building calibration models, only linear regressions such as PLSR have been reported. It is 

important since information in spectra may also be contained non-linearly as suggested by 

Li et al. (2018a), particularly for product quality.  
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Table 2. Cell cultures monitored by NIRS 

Analysis mode, cell 

line, (Reference) 

Compounds Comments 

In-line, CHO-k1, 

(Sandor et al. 2013) 

Ala, Glc, Leu, Gln Mis estimations at the end of culture   

In-line, Not reported, 

(McShane and Coté 

1998) 

Glc, Lact, Ammo Found correlation between chemical 

concentration and time 

At line, CHO 

(Hakemeyer et al. 

2012) 

Gln, Glu, Glc, 

Lact, Ammo, 

VCD, mAb, LDH, 

Osmolality 

Process dynamics must be taken into 

account for calibration to be built.   

Mis estimations at the start of culture   

In-line, CHO k1, 

(Arnold et al. 2003) 

Gln, Glc, Lact, 

Ammo 

There could not only be correlations 

between metabolic rates affecting 

performances of models.  

In-line, CHO,  

(Roychoudhury et al. 

2007) 

Glc, Lact Calibration should consider different 

instrumentation variability (probes, 

bioreactors) for proper accuracy  

In-line, Vero,  

(Petiot et al. 2010) 

Glc, Lact Accurate models can be achieved in cell 

cultures containing large scattering 

compounds such as micro-carriers during 

adherent Vero cell cultures.  

In-line, a mammalian 

cell line, (Henriques et 

al. 2009) 

Glc, Lact, Ammo It was important to include the wavelength 

region of water peak since compound 

information was contained in the 

interactions with water molecules 

In-line, CHO k1,  

(Milligan et al. 2014) 

Glc Difficulty in extrapolating predictions 

outside of model chemical range.  

In-line, CHO 

(Courtès et al. 2016) 

LDH activity NIRS could differentiate the presence of the 

same protein inside and outside cells to some 

extent 

In-line, CHO,  

(Clavaud et al. 2013) 

Prot, Glc, PCV, 

VCD, osmolality 

Mis predictions at the start and end of 

cultures 

In-line, CHO,  

(Li et al. 2018a) 

mAb, Glc, Lact, 

Gln, VCD 

Information could be non-linearly contained 

within spectra 

Glc: Glucose; Glu: Glutamate; Gln: Glutamine; Lact: Lactate; LDH: Lactate 

Dehydrogenase; PCV: Packed Cell Volume; VCD: Viable Cell Density 

 



1. BACKGROUND 

1.3 Monitoring of cell cultures by PAT & NIRS 

 

 

62 

 

Measurement of biological variables in plant cell suspension cultures has not received the 

same attention as for animal cell cultures. As far as can be ascertained, there is no report of 

NIRS for monitoring plant cell cultures. Indeed, monitoring strategies have been focused on 

CO2, O2, pH and biomass concentration, the latter being the most used. Thus, in-line 

monitoring of cells has implied correlations of cells with conductivity (Kwok et al. 1992), 

osmolarity (Madhusudhan et al. 1995) and turbidity (Zhong et al. 1993) of culture media. 

However, such approaches are likely vulnerable in the QbD-PAT frame since they are very 

sensitive to cell physiological state. Thus, variations in process operating conditions could 

compromise monitoring performance in real operating conditions.  

More recently, new monitoring approaches based on real plant cell properties, instead of 

culture media compounds relationship with cells, have been analyzed for monitoring cell 

concentration. Dielectric properties of cells have been successfully used for performing 

correlation of permittivity and biomass in terms of packed cell volume (PCV) and cell dry 

weight (DW) (Markx et al. 1991; Matanguihan et al. 1994; Holland et al. 2013). These 

approaches are likely to be more robust though cell heterogeneity nature of plant cells has 

not been yet addressed. Plant cell morphology is dynamic and strong changes in cell volumes 

and shapes may occur during cultures, causing limited significance of classic monitoring 

variables such as DW or PCV. Indeed, major deviations of such permittivity-cells 

relationships are likely to be caused by cell heterogeneity (Holland et al. 2013). On the other 

hand, fluorescence of some compounds has been proven useful for the establishment of in-

line or on-line monitoring strategies. For instance, NAD(P)H fluorescence correlation to 

biomass has been proposed for on-line monitoring of suspension cultures (Hisiger and 

Jolicoeur 2008; Srivastava et al. 2008). However, plant cells in suspension cultures are highly 

heterogenic and current approaches fail in providing information of cell heterogeneity such 

as somoclonal variation (Deus-Neumann and Zenk 1984) cell differentiation (Torrey 1975) 

or cell aggregation (Patil et al. 2013), which may limit the implementation of PAT strategies.  

Monitoring of substrates, products and by-products have mostly been restricted to off-line 

approaches. Only few studies have reported in-line or on-line monitoring, particularly using 

the fluorescence nature of some compounds. For instance, the alkaloids ajmalicine and 

serpentine could be monitored explicitly in suspension cultures of C. r., though as for 

alkaloids presenting similar fluorescence profile monitoring, monitoring can only be 
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performed for total alkaloids (Hisiger and Jolicoeur 2008). In recombinant plant suspension 

cultures, the product DNA sequence could be added into plant DNA with a marker or reporter 

such as the Green Fluorescent Protein (GFP). It is expected that GFP concentration be 

directly proportional to product concentration, so GFP could be used for monitoring product 

titer in cell culture processes. This approach has been proven feasible in on-line modes for 

tobacco cell cultures also using fluorescent spectroscopy, though limited to secreted GFP, 

because of phenomena such as culture autofluorescence (Su et al. 2004). Novel calibration 

strategies considering such phenomena have proven these fluorescent approaches feasible for 

also monitoring intra-cellular GFP (Su et al. 2005). 
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1.3.1 Synthesis: Monitoring of cell cultures by PAT & NIRS 
 

The complex nature of biopharmaceuticals requires relentless control of cell culture 

processes for limiting medicine heterogeneity and thus assuring clinical effects and patient 

safety. Currently in industry, cell culture processes are monitored in-line through several 

critical variables, though mostly restricted to physical parameters. Processes could be 

enhanced, provided control of innovative parameters with biochemical and biological nature 

be routinely implemented by new in-line process analyzers based on vibrational 

spectroscopy. However, ongoing developments for using spectra in a predictive manner have 

been limited to few biochemical parameters such as the concentrations of some substrates 

(i.e. glucose or glutamine) and by-products (i.e. lactate) while innovative parameters such as 

cell physiological state or medicine heterogeneity have received scarse attention. Indeed, it 

is worth noting that only classic regression methods have been employed for building 

monitoring procedures with limited results. Therefore, there is a need for the application of 

new chemometric strategies for better management of spectra so that monitoring procedures 

are capable of monitoring innovative biochemical and biological parameters within cell 

culture processes.  
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2 AIM OF THE THESIS, HYPOTHESIS & OBJECTIVES 
 

Overall, the background pointed out the complexity of cell cultures and the need for new 

perspectives to assure proper process performances. Therefore, diverse physical, chemical 

and biological parameters must firstly be monitored and then controlled. In spite of the fact 

that new quality approaches such as PAT have been encouraged for 15 years with the idea of 

controlling functional key bioprocess parameters such as cell physiology, kinetics of 

metabolite products or viable cells as well as quality of recombinant proteins, only a few 

parameters are systematically monitored in bio-industries, mainly physical parameters such 

as pH, DO (dissolved oxygen) and temperature, among others. The potential of analyzers 

based on molecular vibrations, mainly NIR spectroscopy, has recently been demonstrated, 

although limited to some common classical parameters such as substrate (glucose, glutamine, 

among others) or by-product (lactate, among others) concentrations, only in some animal cell 

culture platforms, plant cells have not yet been addressed. Moreover, such monitoring 

approaches can still be enhanced as for reducing prediction errors.  

Development of proper monitoring procedures based on NIRS is a multidisciplinary task 

requiring not only process engineering approaches for acquiring reliable and precise 

experimental measurements in large quantities, but also a strong chemometric background 

based on regression methods. Consequently, the aim of this thesis project has been to enhance 

the capabilities of in situ NIR spectroscopy for properly monitoring of cell cultures. It has 

been intended to go some way towards enhancing our understanding of the relationship 

between cell culture nature and NIR spectra by evaluation of diverse chemometric 

approaches. 

 

Therefore, the main objectives were developed to test the following hypothesis: 

1. As far as can be ascertained, in situ monitoring based on NIR spectroscopy has not 

been reported for biopharmaceutic plant suspension cultures – Is the nature of 

suspension culture suitable for in situ monitoring by NIR spectroscopy?  

➔ Objectives: To develop a plant suspension culture process capable of 

antineoplastic molecule production and then to evaluate in situ NIR 

spectroscopy for monitoring. 
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2. Current monitoring approaches are based on linear calibration methods such as PLSR 

and PCR – Are these linear methods always adequate whatever the nature of cell 

culture processes and functional parameter monitored? Could the use of other 

regression methods enhance the efficiency of calibration?   

➔ Objectives: To evaluate the adequacy of current linear regression methods and 

to explore the use of other regression approaches for handling non-linear 

relationships between process parameters and spectra, such as LWR, ANNR 

and SVR.  

3.  The use of in situ monitoring approaches based on NIR spectroscopy has been 

focused on the monitoring of some classical culture parameters (cells, substrates and 

by-products) – Could it be also used for monitoring innovative parameters such as 

mAb glycosylation or cell heterogeneity such as cell differentiation in plant 

suspension culture? 

➔ Objective: To develop and evaluate calibration methods for mAb produced in 

CHO cell culture processes, with different sugar moieties conferring the 

biological product clinical properties. To develop and evaluate calibration 

methods for monitoring cell differentiation in Catharanthus roseus cell 

culture processes, closely related to antileukemic molecule production.  

 

For dealing with all these questions, results of the experimental approach have been 

organized into four chapters. Chapter I primarily concerns the generation of plant cell culture 

processes for anticancer production and the identification of the CPP related to this process, 

which were then used to evaluate their monitoring by NIR spectroscopy at bioreactor scale. 

Chapter II analyzed the multivariable data processing methodologies commonly used for cell 

culture monitoring (Partial Least Squares Regression-PLSR, Principal Component 

Regression-PCR) through classical parameters (concentrations of substrates, products and 

by-products). In addition, a new methodology approach (Locally Weighted Regression-

LWR) is proposed to overcome limitations observed with PLSR and PCR. Chapter III 

proposes the new use of different nonlinear multivariate data processing methodologies 

(Supported Vector Regression-SVR, Artificial Neural Network Regression-ANNR) to 

improve the performance of prediction models for classical parameters. Finally, Chapter IV 
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takes up the results of the previous two chapters to propose new methodologies for 

monitoring innovative parameters related to heterogeneity sources within cell culture 

processes: product heterogeneity in term of mAb glycosylation in CHO cell culture 

processes, and cell heterogeneity in terms of cell differentiation within cell aggregates in 

suspension culture processes of Catharanthus roseus. 
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3 MATERIALS AND METHODS 
3.1 CHO CELL CULTURES 

3.1.1 Cell line 

 

The cell line used was the CHO M250-9 cell line, capable of producing an anti-RhD antibody 

(mAb). It was developed in 2008 at the Bioprocessing Technology Institute in Singapore 

(Chusainow et al. 2009). It is the result of the transfection of the deficient in dihydrofolate 

reductase CHO-DG44 (dhfr -) cell line, with two expression vectors (phCMV-VHRhD-λ1C-

neo and phCMV-VLRhD-KR-neo) containing the genes coding for human anti-rhesus D 

antibody and dihydrofolate reductase (Urlaub et al., 1983). The CHO M250-9 line was then 

adapted to serum-free medium for suspension culture. 

 

3.1.2 Culture media 

 

The culture medium used was a mixture (1: 1 v/v) of two serum- and protein-free commercial 

media: CD-CHO Medium (Thermo Fisher) and PF-CHO Medium (GE Healthcare Life 

Science). CD-CHO medium is a chemically defined medium optimized for CHO cell growth 

and recombinant protein expression in suspension cultures. It contains neither protein, 

peptide components from animal, plant or synthetic origin, nor undefined lysates or 

hydrolysates. PF-CHO medium is a protein-free medium containing soy hydrolysate and has 

been developed to support the growth of multiple CHO dhfr- cell clones. Their mixture was 

supplemented with 0.05 % Pluronic F68 (Sigma-Aldrich) and 4 mM L-glutamine (Sigma-

Aldrich). In bioreactor cultures, an antimycotic and antibiotic solution (Gibco® Anti-anti, 

Sigma-Aldrich) was used at 1 % (v/v). 

 

3.1.3 Conservation of cell lines and pre-culture propagation 

 

The cell line was cryo-preserved in a primary and a working bank. Before freezing, 

exponential growing cells were resuspended in 1 mL culture medium containing 10 % 

dimethylsulfoxide (DMSO, Sigma-Aldrich) and 10 % (v/v) fetal bovine serum (FBS, Sigma 

-Aldrich), at a concentration of approximately 1.5x107 cells.mL-1. The cells were then frozen 

in cryogenic tubes (cryules, Corning) at -80 °C at approximately a 1 °C.min-1 cooling rate 
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(Mr. Frosty ™, Thermo Scientific). After 24 h at -80 °C, the cryogenic tubes were immersed 

and stored in liquid nitrogen at -196 °C. For starting a culture, a cryogenic tube was taken 

from liquid nitrogen and immediately thawed to 37 °C. The content of the tube was 

transferred to 10 mL culture media, then centrifuged (900 rpm, Jouan G 4.11), the supernatant 

discarded and the pellet suspended into 30 mL culture media and cultured in an incubator set 

at 37 °C, 5 % CO2, 80 % relative humidity and 70 rpm. Cells were cultured for 10 days with 

4 passages lasting 2 to 3 d each. Cells were always seeded at 3x105 cells.ml-1 and cultured 

for 3 days before being transferred so as to ensure that the cells were in exponential growth 

phase before experiments. 

 

3.1.4 Culture systems 

 

During cell propagation cultures, single use Erlenmeyer flasks (Fisherbrand™ Shaker Flasks, 

Fisher Scientific) were used in an incubator (Kühner, Adolf Kühner AG) equipped with an 

orbital shaking table (5 cm diameter stirring). The incubator was set at 37°C, 5 % CO2, 80 % 

relative humidity and 70 rpm. The volumes of the flasks used were 250, 500, or 1000 mL, 

containing 50, 100, and 300 mL culture medium respectively. For bioreactor cultures, a 2.5 

L bioreactor (Tryton, Pierre Guérin, France) was used with a starting working volume of 

approximately 1.5 L. The dissolved oxygen percentage (% DO) was measured by an optic 

oxygen sensor (VisiFerm ™ OD, Hamilton) and controlled at 50 % by oxygen supply directly 

into the culture media through the sparger. Temperature was controlled at 37 ºC by 

recirculation of water into the bioreactor glass jacket. The pH was measured by an 

autoclavable sensor (Hamilton) and controlled at 7.2 by addition of either 0.5 N NaOH into 

the culture media or CO2 into the space between culture media and the head-plate. Agitation 

was performed using an Elephant Ear impeller and controlled at 90 rpm  

 

3.1.5 In-line NIR data capture 

 

An in situ transflectance probe (Precision Sensing Devices, MA) with 2 mm effective 

pathlength, was coupled to the bioreactor through a single optic fiber and the probe was 

connected to an Antaris II NIR spectrophotometer analyzer (Thermo Scientific). A culture 

medium scan corresponded to an average of 128 scans with an 8 cm-1 resolution from 4,000 
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to 10,000 cm-1. Spectra were automatically collected every 20 min during cultures. Spectra 

corresponding to the sampling points were selected to generate the calibration models using 

off-line data.  

Spectra were collected using the analyzer software RESULT (Thermo Scientific) and 

transferred to the R2016a MATLAB® environment (MathWorks Inc.), which permitted the 

use of the chemometric software PLS-Toolbox 8.2.1 (Eigenvector Research Inc.) for building 

calibration models. For evaluating the capacity of the models to perform real-time and in situ 

monitoring, the NIR spectra automatically collected every 20 min during cultures were used 

as input for the calibration models. Off-line and in-line profiles were compared for internal 

validation. 

 

 

3.1.6 Off-line analysis of culture compounds 

3.1.6.1 Cells 

 

Cells were analysed as viable and not viable using Trypan blue exclusion dye and a Vi-CELL 

cell counter (Beckman Coulter). Viable cells possess integral cell membranes that exclude 

the dye, whereas dead cells do not. Therefore, dead cells are detected as blue-colored while 

viable cells rest uncolored.  

The cell counter adds trypan blue to the sample in a 1:1 (v/v) ratio. The sample is put into 

counting chambers and 50 pictures of cells are taken by a micro photo camera; concentrations 

of viable and non-viable cells are determined by image analysis.  

 

 

3.1.6.2 Glucose, lactate, glutamine and ammonium 

 

The Gallery™ Automated Photometric Analyser (Thermo Scientific) was used to measure 

the concentration of glucose, lactate, glutamine and ammonium, in the culture medium using 

various enzymatic kits. Samples were centrifuged (100 rcf, 5min) and the supernatant was 

then put in vials for analysis. Concentrations were determined using enzymatic kits from 

Thermo Scientific for glucose (981780) and lactic acid (984308), while enzymatic kits from 

Roche were used for ammonium (06343775001), and glutamine (073956655001) 

concentration determination.    
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3.1.6.3 Monoclonal antibody 

 

Total mAb concentration determination was performed using an enzymatic kit from Roche 

(06681743001) in the Gallery™ Automated Photometric Analyser. and analysis of mAb 

glycosylation was performed at the end of the cultures. The procedure firstly consisted of 

purification and digestion of the mAb within the sample from the bioreactor (approx. 1.8 mL) 

for further analytical analysis. Purification consisted of mAb precipitation by cold acetone (-

20 °C, 2 h) and then centrifugation (5 min, 13000 rcf, 4 °C). The supernatant was discarded, 

and the pellet re-suspended in 0.5 mL ammonium bicarbonate buffer solution (50 mM, pH 

8). Protein denaturalization was carried out by heating the samples for 15 min at 95°C and 

the vials with sample were immediately put into ice to avoid re-naturalization. As the glycan 

chains represented approximately only the 2 % of the total mass of mAb, mAb were digested 

by a trypsin (T8003, Sigma-Aldrich) solution (1 gL-1 in 1mM HCl solution) into several 

glycol-peptides of smaller size, which were already indexed in databases (Kapur et al., 2014). 

Digestion consisted of the addition of 20 μL trypsin (Sigma T8003) solution (1 gL-1 in 1 mM 

HCl) into the sample contained in the buffer. The vials were incubated (37 °C, 12 h, orbital 

agitation 130 rpm) and then digestion was arrested by addition of 15 uL formic acid. The 

vials were then centrifuged (10000 rcf, 25 °C, 10 min) and the supernatant filtered for further 

analysis. Analysis of glycol-peptides were performed using a HPLC-MS (Thermo Fisher) 

equipment, consisting of a HPLC coupled to a photodiode detector and a Linear Trap 

Quadripole (LTQ) mass spectrophotometer in positive electrospray ionization mode (ESI+). 

The separation column was a C18 column (150mm x 2.1 mm) (Grace/ Alltech), 200 μL.min-

1 mobile phase flow rate. An elution gradient of phase A (0.1 % v/v trifluoracetic acid/water) 

and B (0.1 % v/v trifluoracetic acid/acetonitrile) was used: 4% B phase for 5 min, 4% to 15% 

B phase transition for 25 min, and 15 % to 98 % B transition for 5 min. Mass spectrometry 

conditions were as follows: 5 kV sputtering electric tension; flow rates of sheath gas, 

auxiliary gas and flushing gas set respectively at 40, 10 and 10 in UA.min-1; capillary 

temperature at 300 °C; electric tension at 36 V, 80 V, -44 V and 3.25 V for capillary, tube 

lens, bottom lens and front lens respectively. The raw data from the analysis was processed 

using the XCALIBUR (Thermo-Fisher) software. The fraction of each glycol-peptide with a 

particular glycosylated chain was obtained dividing its area by the area of the total IgG signal 
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peak. The concentration of each glycol-peptide could thus be obtained semi-quantitatively 

by multiplying its fraction by the concentration of total mAb analysed by the Gallery 

Analyser. 
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3.2 PLANT CELL CULTURES 

3.2.1 Cell line 

 

The cell lines used were generated from plant material at the Francisco Javier Clavijero 

Botanical Gardens (Instituto de Ecología, A.C., Xalapa, Ver. Mexico). Then calluses were 

transferred to the Plant Cell Lines Bank of the Veracruz Institute of Technology and 

maintained under four different photoperiods. Calluses maintained in a 16 hour per day (hd-

1) photoperiod were used. Selected calluses with similar color and friability from stem, leaf 

and apical meristem tissues were aseptically transferred to 250 mL Erlenmeyer flasks 

containing 100 mL MS liquid medium for establishment of suspension cultures.  

 

3.2.2 Culture media 

 

The culture media used was Murashige and Skoog (MS) medium (Caisson) prepared from 

powder, supplemented with 2 mgL−1 glycine and 100 mgL−1 myo-inositol (Sigma-Aldrich). 

Media was supplemented with 30 gL−1 sucrose or glucose, 4.52 μM 2, 4-D, and 4.44 μM 

BAP. The pH was adjusted to 5.7 ± 0.1 with 0.5 N NaOH and 0.5 N HCl and the medium 

was autoclaved at 120 °C for 15 min. For bioreactor cultures, addition of Plant Preservative 

Mixture (Plant cell Technology) at 1 mLL-1 an antibiotic and antifungal solution was also 

used.  

 

3.2.3 Conservation of cell lines and pre-culture propagation 

 

Cell lines were conserved as suspension and callus cultures. Cells in suspension were 

subcultured every fifteenth day (10 mL suspension culture into 40 mL liquid media in 125 

mL flasks). Stock calluses were maintained on media solidified with 0.9 % (w/v) agar and 

subcultured monthly. The cultures were kept in a 16 hour per day (hd-1) photoperiod.  

Inoculum preparation for experiments at flasks level required biomass concentration from 

several flasks subcultivated at least four times from callus. Biomass centrifuge-concentrated 

(5 min, 250 rcf, 15 ºC) pellets were re-suspended in fresh medium, and volumes were taken 

to inoculate flasks for the various experiments. For bioreactor cultures, suspension cultures 

were generated from 5 g fresh calluses with similar friability, color and age generated only 
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from leaf tissues and placed into 20 mL liquid MS media. Cultures were then incubated for 

six days in 125 mL ErlenMeyer flasks in a 16 h.d-1 photoperiod (30 μmol.m-2 s-1 photonic 

flux), 25 °C and shaken at 100 rpm on an orbital shaker. After the first culture, suspension 

culture was filtered using a sterile stainless steel mesh (2.25 mm2 pore size) to retain callus 

clusters. Then approximately 20 mL culture volumes without the biggest clusters were used 

to equally inoculate two flasks containing 10 mL culture medium and both flasks were 

cultured under the same conditions. Two subsequent subcultures were performed for biomass 

propagation. Sixteen flasks containing a total of 320 mL were concentrated by repeated 

decantation until cells were concentrated in approximately 100 mL, which was used to 

inoculate bioreactors cultures. For both cases, inoculum age was always six days old. 

 

3.2.4 Culture systems 

 

Flask cultures were performed in 50, 125, 250 and 500 mL Erlenmeyer glass flasks 

containing 10, 50, 100 and 250 mL MS media respectively. While for the 125 mL flasks 

silicone sponge closures were used, aluminum foil closures were used for all the other flask 

sizes. Flasks were in orbital agitation (90 rpm) with a 5 cm orbital diameter. Flasks were 

maintained at room temperature, controlled at 24 to 26 °C.   

Cell cultures were performed in 3 L benchtop bioreactors (Applikon, detalles) with a 2 L 

working volume. Agitation of suspension culture was performed by a spin-filter coupled to 

a marine impeller. The set points for all cultures were 30 °C and 90 rpm stirring. Aeration of 

cultures was by air flux at 200 mL.min-1. DO and pH (5.6) were maintained at 50 % saturation 

and 5.6 respectively (Applikon Bio controller ADI 1010). Bioreactors were illuminated by a 

LED panel below the jar in a 16 h.d-1 photoperiod (50 μmol.m-2 s-1 photonic flux). For 

bioreactor cultures, culture media were filter-sterilized using a bottle top filter (0.20 μm, 

Thermo Scientific™ Nalgene™) and then tipped out into the autoclaved bioreactor.  

 

3.2.5 In-line NIR data capture 

 

An in situ transflectance probe (Precision Sensing Devices, Inc., Medfield, MA) with 6 mm 

effective pathlength was coupled to the bioreactor through a microbundle optic fiber 

containing 80 single fibers (40 fibers per radiation source and 40 fibers per signal receiving). 
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The probe was connected to a XDS Process Analytics near infrared spectrophotometer 

analyzer (Foss NIR Systems, Silver Spring, USA). A culture medium scan corresponding to 

an average of 64 scans with a 0.5 nm resolution from 800 nm to 2,200 nm was performed. 

Spectra were automatically collected every 30 min during cultures and those corresponding 

to the sampling points were selected to generate the calibration models using the off-line 

data. Spectra were collected using the analyzer software VISION (FOSS NIRSystems, V. 

3.5,) and transferred to the R2016a MATLAB® environment (MathWorks Inc.), which 

permitted the use of the PLS-Toolbox 8.2.1 chemometric software (Eigenvector Research 

Inc.) for building the calibration models. For evaluating the capacity of the models to perform 

real-time and in situ monitoring, NIR spectra automatically collected every 30 min during 

cultures were used as input for the calibration models. Off-line and in-line profiles were 

compared for internal validation. 

 

3.2.6 Off-line analysis of culture compounds 

3.2.6.1 Biomass dry weight 

 

In a laminar flow cabinet, 1.0 mL suspension culture from a thoroughly stirred medium was 

sampled and put in an already weighed 1.5 mL micro-centrifuge tube. The tube was 

centrifuged (10,000 rcf, 10 min; Eppendorf 5424), its content decanted and then 1.0 mL 

deionised water added. Centrifugation and decantation were repeated, then the washed pellet 

was vacuum-dried (65°C, ShellLab mod. 1410) until constant weight was reached, and then 

the pellet was weighed (Mettler H80) and analysed for calculating biomass dry weight 

concentration.   

 

3.2.6.2 Differentiated cells concentration 

 

Cell differentiation analysis of cells in suspension cultures was undertaken based on cell wall 

differences; parenchyma, collenchyma and sclerenchyma cells were counted. A 1 mL sample 

was put into a 1.5 mL micro-centrifuge tube and centrifuged (250 rcf, 15 min); 900 μL of the 

supernatant were put in a tube and 900 μL digestion enzyme (TrypLE™ Express Enzyme 

(1X), Thermo Fisher Scientific) were added to the pellet. The tube was agitated with a vortex 

(MX-S, Science MED) for 45 min. It was centrifuged under the same conditions, and the 
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pellet isolated in 300 μL by discarding the supernatant, resulting in a digested cell suspension 

suitable for analysis. Cells in digested cell suspensions were analysed and counted twice in 

Neubauer improved chamber, each count comprised between 105 and 180 single cells.   

 

3.2.6.3 Carbohydrates concentration 

 

Carbohydrate concentration in cell culture samples was determined as glucose and fructose 

concentration by HPLC (Alliance Waters 2695; Shodex 1110 column: H2SO4 0.5 M, 0.6 

mLmin-1, 50 °C; refractive index detector: Waters 2414, 55 °C, 10 µL volume injection).  

Samples consisting of 500 μL cell-free supernatant were hydrolysed by adding 500 μL 4 M 

HCl solution and incubated at 60 ºC for 20 min. When the sample reached room temperature, 

125 μL BaO 0.3 M and 125 µL ZnSO4 5 % p/v solutions were added. Then, after the sample 

was centrifuged (10000 rcf, 10 min), the supernatant was filtered (Polypropylene Pall GHP 

acrodisc 13, 0.45 μm) and transferred to an HPLC vial for analysis. Samples were compared 

against external standard curves for glucose and fructose. 

 

3.2.6.4 Vincristine and vinblastine concentration 

 

Anticancer compounds in cell cultures were analysed as VC and VB concentrations by HPLC 

analysis (Waters 600 HPLC System (Milford, Mass.U.S.A.); Chromolith® Performance RP-

18 endcapped 100-4.6 HPLC column; mobile phase acetonitrile–0.1M/ phosphate buffer 

containing 0.5 % glacial acetic acid, pH 3.5 (21/79 v/v, pH 3.5); 1.2 mL.min-1 flow rate; 

detector Waters 2487 detector (λ 205 nm).  

Volume samples (20 – 30 mL) were taken from flasks and freeze-dried (90x10-3 mbar, -

43 ºC, 24 h) in 50 mL glass vials. Then approximately 100 mg lyophilised sample was taken 

and solubilised in a 25 mL glass tube containing 1 mL methanol. The content of the tubes 

was mixed and ultrasonically homogenised for 1 h at 56 °C (Cole-Parmer, cv33). Alkaloids 

in methanol were separated from insolubilized compounds by centrifugation (12,000 rcf, 10 

min) and the supernatant was transferred to an HPLC vial for analysis. Samples were 

compared against external standard curves for VC and VB. 
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4 RESULTS AND DISCUSSION 

 

4.1 CHAPTER I: PLANT SUSPENSION CULTURES FOR ANTILEUKEMIC 
AGENT PRODUCTION 

4.1.1 Introduction 
 

Plant-derived biopharmaceuticals are essential for treating several diseases. However, they 

are structurally complex which limits total chemical synthesis. On the other hand, their 

natural biosynthesis is extremely complex requiring several enzymatic steps, which limits 

their bioavailability in plants. During the last decades, efforts have been made to enhance 

bioavailability by the use of cell culture technology, particularly suspension cultures which 

are feasible for scaling up.  

For instance, the industrial production of the antineoplastic molecule paclitaxel, which had 

been classically produced from plant material extraction are now moving toward plant 

suspension systems of Taxus species. The former example encouraged the interest of other 

plant-derived biopharmaceutics for their production using cell culture technology. Bioactive 

molecules from Catharanthus roseus, Madagascar periwinkle, are of great interest in this 

case since they exhibit important clinical effects, such as the anticancer molecules vincristine 

and vinblastine, or the antihypertensives ajmalicine and serpentine. However, such molecules 

have been extremely difficult to express in suspension cultures, particularly vincristine and 

vinblastine, which are in vivo synthetized through different differentiated cells within 

different tissues. Therefore, the production of a commercial suspension culture for 

Catharanthus alkaloids has not yet been set in motion. The objective of this chapter has been 

to analyze Catharanthus suspension cultures, which may contribute to the development of 

new processes based on differentiated cell suspension cultures capable of producing the 

anticancer molecules vincristine and vinblastine. Results have pointed out the suitability of 

such new preliminary processes, the basis for analyzing the suitability of in situ NIR 

spectroscopy monitoring on a bioreactor scale (Chapter IV 4.4.1.2). The great majority of 

results from this chapter are intended for publication and thus are accordingly organized for 

possible publication in Biotechnology Letters journal. 
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4.1.1.1.1 Interest of cellular differentiation in the production of vincristine and vinblastine 

in suspension cultures of Catharanthus roseus (L.) G Don. 
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a Tecnológico Nacional de México/Instituto Tecnológico de Veracruz: Calz. M.A. 

de Quevedo 2779, Veracruz, Ver. México.  

b Laboratoire Réactions et Génie des Procédés, UMR 7274, CNRS-Université de 

Lorraine, 2 avenue Forêt de Haye, TSA 40602, 54518 Vandœuvre-lès-Nancy, 

France.  

c Instituto de Ecología A.C.: Carretera antigua a Coatepec 351, Xalapa, México. 

 

4.1.1.1.1.1 Abstract 

 

Objective: Cell differentiation is needed for the in vivo synthesis of vincristine and vinblastine 

and thus in vitro cultures are usually considered as non-producing platforms for these 

antineoplastic molecules. However, several studies have recently detected these molecules 

in early differentiated calluses and also in suspension cultures. The degree of cell 

differentiation, nevertheless, has not been addressed for their production, particularly in 

suspension cultures which could be used as a large-scale producing platform. Therefore, the 

effect of different culture conditions on the production of vincristine and vinblastine, taking 

into account cytodifferentiation within cell aggregates, has been analysed for the first time. 

Results: Culture conditions such as light exposure and plant growth regulator regimes have 

been shown to affect cell differentiation. Moreover, this cell differentiation into 

collenchyma- and sclerenchyma-like cells was observed to be related to vincristine and 

vinblastine titers. Conclusions: Results demonstrated the use of cell differentiation for the 

establishment of advanced processes of differentiated cell suspension cultures for producing 

plant-derived biologicals such as vincristine and vinblastine.  

 

4.1.1.1.1.2 Introduction 

 

Catharanthus roseus (L.) G. Don, Madagascar periwinkle, has been used in traditional 

medicine against several diseases such as malaria and diabetes. It is one of the most 
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extensively investigated medicinal plants because of its capacity to produce high economic 

value phytochemicals such as the antineoplastic molecules vincristine (VC) and vinblastine 

(VB) and the antihypertensive ajmalicine (Tikhomiroff and Jolicoeur 2002). Due to the 

complexity and scarcity of VC and VB within plants, production is carried out from the 

coupling of the precursors catharanthine and vindoline present in higher amounts in plant 

material (Alam et al. 2017). Nowadays production is mainly carried out by extraction from 

plant material grown in the United States, Spain, China, Africa, Australia, India and Southern 

Europe (Barkat et al. 2017). However, expensive extraction procedures are required with 

very low recovery. Thus, intensive efforts have been invested for increasing availability such 

as production via in vitro cultures, particularly suspension cultures feasible for scale-up. 

Nonetheless, no commercial production using C. roseus suspension culture has been set in 

motion. Production of VC and VB in plants requires intracellular and intercellular 

translocation of pathway intermediates within differentiated cells in leaves (St-Pierre et al. 

1999; Murata and Luca 2005). This complex synthesis partially explains why attempts for 

producing VC and VB by cell culture technology have failed, particularly in undifferentiated 

cell suspension cultures (Verpoorte et al. 1993). 

This former conception has been challenged by several studies demonstrating VC and VB 

production capability by in vitro cultures, particularly of calluses with early differentiation 

into roots or shoots (Miura et al. 1987; Kalidass et al. 2010; Ataei-Azimi et al. 2018). These 

reports have claimed that production capability is closely related to cell differentiation, 

though no further details are provided. Moreover, suspension cultures with VC and VB 

production capability have also been reported (Taha et al. 2014; Zhang et al. 2015), although 

no inferential about this capacity was provided.  

The conception that in vitro cultures are not capable for VC and VB production mainly relies 

on the fact that in vivo synthesis of the precursor vindoline has been localized in chloroplasts 

(De Luca and Cutler 1987) and thus in vitro heterotrophic cultures lacking functional 

chloroplasts could not synthetize the precursor. Autotrophic suspension cultures have been 

developed seeking production in functional chloroplasts but neither vindoline, VC nor VB 

was detected (Tyler et al. 1986). On the other hand, there have been reports of vindoline 

producing cultures under heterotrophic conditions (Scott et al. 1980; Naaranlahti et al. 1989). 

Indeed, it was recently discovered that suspension cultures of cambial meristem cells 
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contained complete sets of enzymes that are responsible for the production of VC and VB 

(Zhang et al. 2015). Thus, there must be alternative metabolic pathways in in vitro 

heterotrophic cultures which could be activated by cell differentiation. Therefore, this study 

sought to analyze cell differentiation in suspension cultures and its eventual relationship with 

VC and VB production capability. A broad spectrum of culture conditions based on plant 

growth regulators (PGR) regimens and photoperiods was tested for inducing different cell 

differentiation and production capabilities. This study was exploratory and interpretative in 

nature, seeking to be the starting point for further research which could help to understand 

the nature of VC and VB in vitro synthesis for novel differentiated cell suspension culture 

production processes.  

 

 

4.1.1.1.1.3 Materials and methods 

 

Generation of suspension cultures 

 

Callus lines were generated from a mature C. roseus plant at the Francisco Javier Clavijero 

Botanical Gardens (Instituto de Ecología, A.C., Xalapa, Ver. Mexico). Plant material passed 

through a sterilization procedure and then explants from stems, leaves, apical, intercalary and 

lateral meristem tissues were placed on MS (Murashige and Skoog) medium with 30 g.L-1 

sucrose, 6.5 gL-1 agar (Caisson, Micropropagation Powder Type I), 4.52 μM 2, 4-

Dichlorophenoxyacetic acid (2, 4-D) and 4.44 μM 6-Benzylaminopurine (BAP) in darkness. 

Subsequently 374 calluses were induced, multiplied and used for further experiments. 

Calluses were transferred to the Plant Cell Lines Bank of the Veracruz Institute of 

Technology and maintained under four different photoperiods. Calluses maintained in a 16 

hour per day (hd-1) photoperiod (photonic flux of 30 μmol.m-2 s-1) were used. Selected 

calluses with similar color and friability from stem, leaf and apical meristem tissues were 

aseptically transferred to 250 mL Erlenmeyer flasks containing 100 mL MS liquid medium 

supplemented with 2 mg L−1 glycine, 100 mg L−1 myo-inositol (Sigma-Aldrich), 30 g L−1 

sucrose, 4.52 μM 2, 4-D, and 4.44 μM BAP (proliferation medium). The pH was adjusted to 

5.7 ± 0.1 with 0.5 N NaOH and 0.5 N HCl and the medium was autoclaved at 120°C for 15 

min. For subsequent subculturing in fresh medium, a volume of 10 mL of the original culture 
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was inoculated into a 125 mL Erlenmeyer flask containing 40 mL proliferation medium every 

15 days. Cell aggregation was reduced with each subculture, negligible at the 4th subculture 

since the majority of aggregates freely passed through a needle (1.5 mm inner diameter), and 

therefore only suspension cultures with aggregates smaller than 1.5 mm were used for further 

experiments. For subsequent experiments, only leaf cell line was selected for enhanced 

capabilities (data not shown).   

Once suspension culture was established, inocula for further experiments were always six-

day-old biomass suspension cultures that were centrifuge-concentrated (5 min, 250 rcf, 15 

ºC). Pellets were then re-suspended in agitated (magnetic stirrer, 90 rpm) fresh medium (≈ 

50 mL) until a cell dry weight of approximately 3 gL-1 was achieved, then aliquots were taken 

to inoculate flasks for the various experiments. Initial biomass dry weight concentration for 

flask experiments was 0.06 gL-1 ± 0.01.   

 

Effect of plant growth regulators and photoperiods on leaf cell line  

 

Several attempts have been made to evaluate the effect of PGR on vincristine and vinblastine 

production with different results in plants (Srivastava and Srivastava 2007; Pan et al. 2010). 

Studies using callus cultures have underlined the importance of PGR mixtures (Kalidass et 

al. 2010; Mekky et al. 2018), and so this work focused on evaluating combinations of 

common auxins and citokines used for suspension cultures and also their effect on different 

photoperiods. Suspension cultures were initiated from calluses as previously described, then 

propagated during 12 subcultures in proliferation medium. For evaluating the effect of culture 

conditions, culture medium was based on basal proliferation medium with specific PGR 

composition. Firstly, the effect of three single PGR was studied: 2, 4-D (4.5 μM), 1-

Naphthaleneacetic acid (NAA) (4.5 μM) and Gibberellic acid (GA3) (4.5 μM). Secondly, 

mixtures of 2, 4-D (4.5 μM) with citokines (Kinetine (Kin) and BAP) were tested: 2, 4-D + 

BAP (2.25 µM); 2, 4-D + BAP (4.5 µM); 2, 4-D + Kin (2.25 µM) and 2, 4-D + Kin (4.5 µM). 

One treatment without any exogenous PGR was included as a control, thus eight PGR 

regimens were tested. 

The same inoculum, a previously 12-fold subcultivated suspension culture, was used for all 

tested treatments to reduce the effect of common plant cell heterogeneity. Flasks with silicone 
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sponge closure (Chemglass, CLS-1490-038) were incubated for 25 days at room temperature 

with orbital agitation (0.22 rcf) in a rotary shaker (New Brunswick G70; 7 μmol.m-2 s-1 

photonic flux). Four different photoperiods: 0 h (total darkness), 8 hd-1, 16 hd-1 and 24 hd-1 

(continuous light exposure) were used. As four different photoperiods and eight different 

PGR regimens were tested, the impact of 32 operating conditions on alkaloid production and 

cell differentiation was evaluated. 

 

Production of VC and VB by differentiated cell culture in a bioreactor 

 

Two bioreactor batch cultures were used to analyze the dynamics of cell differentiation and 

VC and VB production in suspension cultures. Differentiated cell subpopulations were 

measured during the whole culture, as also were the concentrations of VC and VB in culture 

media. Cultures were carried out in a 3 L benchtop bioreactor (Applikon, the Netherlands) 

with a 2 L working volume using marine impeller performed agitation (90 rpm; 30 °C). For 

the first culture, dissolved oxygen (DO) was controlled at 50 % air saturation, while for the 

second culture it was measured but not controlled. The bioreactor jars were illuminated in a 

16 hd-1 photoperiod (50 μmol.m-2 s-1 photonic flux). A leaf cell line already subcultured four 

times during a 6-day period was used as inoculum. The culture media was MS medium 

supplemented with 2, 4-D (4.5 µM) + BAP (4.5 µM) for both bioreactor cultures.   

For the generation of inoculums, calluses with similar friability, color and age were used to 

generate suspension cultures. Approximately 5 g fresh callus was placed into 20 mL liquid 

MS media supplemented with 2 mg.L-1 glycine, 100 mg.L-1 myo-inositol, 30 g.L-1 sucrose, 

2, 4-Dichlorophenoxyacetic acid (2, 4-D), 4.44 μM 6-Benzylaminopurine (BAP). The pH 

was adjusted to 5.7 ± 0.1 with 0.5 N NaOH and 0.5 N HCl and the medium was autoclaved 

at 121°C for 15 min. Cultures were then incubated during six days in 125 mL Erlenmeyer 

flasks in a 16 h.d-1 photoperiod (30 μmol.m-2 s-1 photonic flux) at 25°C and shaken at 100 

rpm on an orbital shaker. After the first culture, the suspension culture was filtered using a 

sterile stainless-steel mesh (2.25 mm2 pore size) to retain callus clusters., then approximately 

20 mL culture volumes were used to equally inoculate two flasks containing 10 mL culture 

media, which were subsequently cultured under the same conditions. Two further subcultures 

were performed for biomass propagation. Sixteen flasks containing a total of 320 mL were 
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then concentrated by repeated cell decantation until an approximately 100 mL concentration 

was achieved which was used to inoculate bioreactor cultures. This procedure was repeated 

for every bioreactor inoculation.     

 

Determination of biomass concentration and growth 

 

Biomass growth was measured by gravimetric method (changes in dry weight). In a laminar 

flow cabinet, 1.0 mL suspension culture from a thoroughly stirred medium was sampled and 

put in an already weighed 1.5 mL micro-centrifuge tube. The tube was centrifuged (10,000 

rcf, 10 min; Eppendorf 5424), its content decanted and then 1.0 mL deionised water added. 

Centrifugation and decantation were repeated and the washed pellet vacuum-dried (65°C, 

ShellLab mod. 1410) until constant weight was reached, and then weighed (Mettler H80).  

 

Cells differentiation analysis 

 

Cell aggregates within cultures were histologically analysed by optical microscopy (Motic, 

MO-567, USA). Cell differentiation analysis of cells in suspension cultures was undertaken 

based on cell wall differences (Mauseth 2014). Cells with thin primary walls were defined as 

parenchyma cells, cells with thickened primary walls as collenchyma cells and cells with 

primary walls plus secondary walls as sclerenchyma cells and all cells counted.  

A sample of 1 mL was put into a 1.5 mL micro-centrifuge tube and centrifuged (250 rcf, 15 

min); 900 μL of the supernatant was put in a tube and 900 μL digestion enzyme (TrypLE™ 

Express Enzyme (1X), Thermo Fisher Scientific) was added to the pellet. The tube was 

agitated in a vortex (MX-S, Science MED) for 45 min. It was centrifuged with the same 

conditions, and the pellet was isolated in 300 μL by discarding the supernatant, resulting in 

a digested cell suspension suitable for analysis. Cells in digested cell suspensions were 

analysed and counted twice in a Neubauer improved chamber (Blaubrand), each count 

comprising between 105 and 180 single cells. Cell differentiation analysis was performed at 

the end of cultures in flask experiments and periodically in bioreactor cultures.  
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Determination of alkaloids, vincristine and vinblastine 

 

For identification of alkaloids in cells, 100 μL digested cell suspension was mixed with 100 

μL Wagner’s reagent and incubated for 5 min. Then cell observation was carried out in a 

Neubauer improved chamber. Alkaloids within cells were detected by their reddish-brown 

coloration. (Motic, MO-567, USA).  

Quantification of VC and VB in culture media was performed by an adapted and validated 

HPLC procedure (Gupta et al. 2005; Iskandar and Iriawati 2016), using a Waters 600 HPLC 

System (Milford, Mass., U.S.A.): Chromolith® Performance RP-18 end-capped 100-4.6 

HPLC column; mobile phase acetonitrile–0.1M/ phosphate buffer containing 0.5 % glacial 

acetic acid, pH 3.5 (21/79 v/v), 1.2 mLmin-1 flow rate; Waters 2487 detector, λ 205 nm. 

Briefly, volume samples (20 – 30 mL) of culture media with cells were taken and freeze-

dried (90x10-3 mbar, -43 ºC, 24 h) in 50 mL glass vials. Then approximately 100 mg 

lyophilised sample was taken for extraction after which alkaloids were separated from 

insolubilized compounds by centrifugation (12000 rcf, 10 min). The supernatant was 

transferred to an HPLC vial for analysis and samples were compared against external 

standard curves for VC and VB.  

 

Statistics 

 

Data were analyzed with a one-way ANOVA and post hoc Tukey comparison tests (p ≤ 

0.05) using MATLAB environment (R2016a version; MathWorks Inc.).  

 

4.1.1.1.1.4 Results 

 

Effect of culture conditions in flasks 

 

Changing culture media or operating conditions will always show a change in culture 

performance, though it usually takes 5-10 subcultures for final effects. Culture conditions 

affected cell production capacity in the first subculture as shown in Table 4.1-1, and detection 

of VC and VB varied differently depending on culture conditions. Light exposure had a 
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strong effect since neither VC nor VB was detected in dark conditions independently of PGR 

regimen. Detection of VB only occurred when using an 8 hd-1 photoperiod.  

Evaluation of the effect of light exposure (photoperiod) in each individual PGR regimen 

revealed that there was no statistical difference (One-way ANOVA at 95 % confidence level) 

in VB titers either for cultures with NAA, 2,4-D as sole PGR, those including BAP or control 

culture (without exogenous PGR). Thus, the culture conditions that effectively induced VB 

production were those including GA3 and mixtures of 2,4-D and Kin. As for VC titers, there 

was no statistical difference (One-way ANOVA at 95 % confidence level) between 

photoperiods for treatments including NAA, GA3, or control culture. Thus, the culture 

conditions that effectively induced VC production were those that contained 2,4-D.  

 

Table 4.1-1. Effect of PGR on suspension cultures 

 

 

Exogenous plant growth regulator regimens 

No PGR 

 

 

2,4-D 

 (4.5 µM) 

 

NAA  

(4.5 µM) 

 

GA3  

(4.5 µM) 

 

2,4-D  

(4.5 µM) 

BAP  

(2.25 µM) 

2,4-D 

 (4.5 µM) 

BAP 

 (4.5 µM) 

2,4-D 

 (4.5 µM) 

Kin  

(2.25 µM) 

2,4-D 

 (4.5 µM) 

Kin  

(4.5 µM) 

L
ig

h
t 

ex
p

o
su

r
e 

p
h

o
to

p
er

io
d

 (
h

d
-1

) 

0
 VC 0a 0 a 0 a 0 a 0 a 0 a 0 a 0 a 

VB 0 A 0 A 0 A 0 A 0 A 0 A 0 A 0 A 

8
 VC 1 a 19 b 0 a 3 a 2 a 1 a 3 a 2 a 

VB 1 A 1 A 0 A 21 B 0 A 0 A 17 B 13 B 

1
6
 VC 0 a 34 d 0 a 0 a 23 b 27 b 25 b 30 b 

VB 0 A 0 A 0 A 0 A 0 A 0 A 0 A 0 A 

2
4
 VC 0 a 25 c 0 a 0 a 0 a 38 c 35 c 37 c 

VB 0 A 0 A 0 A 0 A 0 A 0 A 0 A 0 A 

2, 4-D: 2, 4-Dichlorophenoxyacetic acid, NAA: 1-naphthaleneacetic acid, BAP: 6-benzylaminopurine, Kin: Kinetin. 

VC: Vincristine titer (mg/L) in suspension culture, VB: vinblastine titer (mg/L) in suspension culture, VC and VB 

analyzed at 25 d; superscript letters indicating statistical difference between groups due to the effect of light exposure in 

a single PGR regimen, lowercase and uppercase letters for VC and VB respectively.  

 

 

Cell differentiation and its relationship with VC and VB production in flasks 

 

As VC and VB were detected, a possible relationship between C. roseus cell differentiation 

in suspension cultures and VC and VB titers was then investigated, after first classifying 

differentiated cells, based on cell wall differences, as parenchyma, collenchyma and 

sclerenchyma cells. Cell aggregates were observed, and their compositions analyzed seeking 

differentiated cells. During primary analysis, it was discovered that C. roseus aggregates 

contained several cell subpopulations in cell aggregates that achieved sizes up to 300 µm 
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Figure 4.1-1-a), although smaller sizes were more common (Figure 4.1-1-b). The three main 

types of differentiated cells were present in cell aggregates. Examples of parenchyma and 

collenchyma cells are shown in Figure 4.1-1-c, which also shows an example of cell 

differentiation from parenchyma to collenchyma status. Cell differentiation process to 

sclerenchyma status is also shown in Figure 4.1-1-d. The most common differentiated cell 

type was collenchyma, which usually comprised the majority of registered cells. Parenchyma 

cells were observed in three main subtypes: with nuclei and visible or invisible organelles, 

and chlorenchyma cells to a lesser degree. Sclerenchyma cells were observed in the form of 

tracheary elements mainly and sclereid cells to a lesser degree. 

The presence of differentiated cells within cell aggregates may imply that there could be 

some kind of early specialization or at least cells with different metabolic characteristics 

which could be related to enhanced alkaloid production. Therefore, Wagner’s reagent was 

used for staining cells and revealing the presence of alkaloids within cells. Parenchyma cells 

were negative for the stain (Figure 4.1-1-e2) while sclerenchyma cells in the form of 

tracheary elements (Figure 4.1-1-e1) and sclereid-like cells (Figure 4.1-1-f, white arrows) 

were colored reddish-dark brown indicating the presence of alkaloids, particularly in their 

massive cell walls. In contrast, deposition of alkaloids was limited for collenchyma cells 

(Figure 4.1-1-f, dark arrows). Summarizing, alkaloids were mainly detected in sclerenchyma 

cells, although there were a few sclerenchyma cells in the form of tracheary elements that 

were negative for Wagner’s reagent (Figure 4.1-1-g, triangle), though negligible in extension.  
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Figure 4.1-1. Micrographs of differentiated cells during C. roseus suspension cultures: a. 

Large aggregate with dead sclerenchyma cells stained by Evans blue. b. Typical size 

aggregate with differentiated cells: Parenchyma cells (white arrows), collenchyma cells 

(black arrows) and a sclerenchyma cell (triangle). c. Example of a parenchyma cell (1), 

collenchyma cells (2) and the differentiation process into collenchyma from parenchyma 

status (3). d. Example of differentiation process into sclerenchyma cells (arrows). e. a 

sclerenchyma cell as a tracheary element (1) stained reddish-dark brown, a positive reaction 

for alkaloids with Wagner’s reagent (arrows) and parenchyma cells (2) negative for 

alkaloids. f. a sclerenchyma cell in the form of massive sclereid- or idioblast-like cells 

(white arrows) in front of collenchyma cells (dark arrows), positive for alkaloids with 

Wagner’s reagent. g. Parenchyma (dark arrows), collenchyma (white arrows) and 

sclerenchyma (triangles) cells negative for alkaloids with Wagner’s reagent. h. example of 

cell aggregate composed of only sclerenchyma cells in the form of tracheary elements. i. 

example of cell aggregate composed of only tracheary elements. 
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The presence of differentiated cells with different alkaloid contents could explain differences 

in VC and VB titers (Table 4.1-1). This hypothesis was addressed by evaluating the 

relationship between differentiated cell population distributions and VC and VB titers. The 

inherent nature of suspension cultures to form aggregates was not suitable for direct cell 

differentiation state identification, therefore, to study cell differentiation, subpopulation 

distribution was measured by using single cell count in enzymatic digested suspension 

cultures.  

 

Table 4.1-2. Differentiated cell distribution in VC and VB producing and non-producing 

suspension cultures 

 Exogenous plant growth regulator regimens 

 

NAA (4.5 µM) 

 

2,4-D (4.5 µM) + BAP (4.5 µM) 

 Differentiated cells type % cells VC 

(mg/L) 

% cells VC 

(mg/L) 

P
h

o
to

p
e
r
io

d
 (

h
d

-1
) 

0
 

Parenchyma 23  

0 

17  

0 Collenchyma 72 79 

Sclerenchyma 5 4 

8
 

Parenchyma 25  

0 

21  

1 Collenchyma 70 74 

Sclerenchyma 5 5 

1
6
 

Parenchyma 31  

0 

25  

27 Collenchyma 64 59 

Sclerenchyma 5 16 

2
4
 

Parenchyma 38  

0 

11  

38 Collenchyma 56 61 

Sclerenchyma 6 28 

Analysis at day 25 

 

 

A relationship between sclerenchyma cells concentration and VC concentration was found 

when data from all culture conditions was plotted, with a relative high determination 

coefficient (R2) of 0.88 (data not shown). From all the operating conditions tested, the culture 

treated with 2, 4-D (4.5 µM) plus BAP (4.5 µM) was selected because consistent data in 

terms of small standard deviations for VC concentration was observed. This led to significant 

differences between VC productions obtained with the different photoperiods tested (One-

way ANOVA, post hoc Tukey, p ≤0.01). Results were compared to cultures with NAA (4.5 
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µM) where no production of VC or VB was observed. Differentiated cell distribution for 

these two PGR regimens at four different photoperiods is given in Table 4.1-2. The culture 

with NAA (4.5 µM) contained low levels of sclerenchyma cells independent of photoperiod 

used, while increased light exposure in the 2, 4-D (4.5 µM) plus BAP (4.5 µM) condition 

resulted mainly in sclerenchyma cell differentiation, up to 28 % (3 % sclereids, 25 % 

tracheary elements) of total cell population during continuous light cultures. This increase in 

sclerenchyma cell percentage was parallel to the increase in VC production (Table 4.1-2). 

These data strongly suggested that cell differentiation was responsible for different VC 

production capacity of the cultures. Composition of aggregates of NAA cultures was similar 

to the aggregate shown in Figure 4.1-1-b, while aggregates composed of only sclerenchyma 

cells (Figure 4.1-1-h, i) were commonly observed in cultures with relatively high VC and VB 

titers.  

 

Dynamics of cell differentiation in bioreactors 

 

Results in flask cultures confirmed that culture conditions, such as addition of PGR and light 

exposure, strongly affected production of VC and VB; moreover, such production was related 

to cell differentiation, particularly to sclerenchyma cells. Unfortunately, since large volumes 

of sample (≈ 25 mL) were required for VC and VB analysis, VC and VB concentrations were 

only analyzed at the end of the cultures. Consequently, two bioreactor cultures were used to 

analyze the dynamics of cell differentiation and its impact on VC and VB titers. The first 

bioreactor was pH and DO controlled, while in the second bioreactor culture, those 

parameters where monitored but not controlled.  

For the first culture (Figure 4.1-2), analysis showed that parenchyma cells mainly supported 

culture growth while collenchyma cells were likely to have limited proliferation capacity. On 

the other hand, as sclerenchyma cells are programmed to die, particularly in the form of 

tracheary elements, increase of cell concentration was only caused by cell differentiation. 

Cell differentiation to sclerenchyma status was likely to be slow and constant during culture, 

though cell differentiation to collenchyma from parenchyma status was relatively fast, as 

demonstrated by the abrupt decrease and increase of parenchyma and collenchyma cells 

respectively around 100 h of culture. Analysis of VC and VB titer profiles in relation to 

differentiated cells revealed no positive relationship between parenchyma cells with VC and 
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VB production. During the first 24 h of culture, parenchyma cells increased two-fold but no 

increase in VC and VB was detected. This fact could explain why fast-growing suspension 

cultures of C. roseus mainly composed of parenchyma cells are usually reported as non-

producing VC and VB processes. Direct comparison of collenchyma and sclerenchyma cell 

profiles with VC and VB profiles revealed a likely correlation of VC and VB production to 

collenchyma and sclerenchyma status respectively. This is in agreement to previous results 

in flasks experiments where VC titers were associated to sclerenchyma cells.  

 

 

 
Figure 4.1-2. Kinetic profiles during bioreactor culture producing sclerenchyma cells, VC 

and VB (first bioreactor culture) 

 

For the second culture (Figure 4.1-3), the increase of cell concentration was also supported 

by parenchyma cells, though the lag phase was longer than in the first culture. Concentration 

of collenchyma and sclerenchyma cells remained practically constant during the culture, 

except for collenchyma cells at the beginning and end of the culture; titers for VC and VB 

also remained constant with no important increase. Contrary to flask cultures, both bioreactor 

cultures overproduced VB instead of VC.  
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Figure 4.1-3. Kinetic profiles during bioreactor culture not producing either sclerenchyma 

cells, VC or VB (second bioreactor culture) 

 

4.1.1.1.1.5 Discussion 

 

Cell heterogeneity in callus or suspension cultures of C. roseus in terms of cell morphology 

or differentiation has only been described in a limited way, probably because plant cell 

growth analysis is usually performed by cell dry weight. In fact, although no consensus has 

been achieved for the term differentiation in suspension cultures, it has been widely stated 

that differentiation in C. roseus is favorable for producing molecules of interest (Lindsey and 

Yeoman 1983). The size and elongated form of cells have been related to a cell differentiated 

state and enhanced indole alkaloid production (Kim et al. 1994a). Other reports have defined 

cell differentiation in terms of chemical properties of cells. For instance, differentiation has 

been based on different vacuolar pH or on vacuole color due to the presence of alkaloids and 

other plant metabolites (Knobloch et al. 1982; Neumann et al. 1983). However, all these 

reports and the great majority of images provided in publications of C. roseus showed 

relatively homogeneous cell populations of parenchyma-like cells in terms of cell anatomy 

(Hall and Yeoman 1987; Kim et al. 1994b). 

As far as it can be ascertained, sclerenchyma cells have not yet been reported in C. roseus 

suspension cultures and this is perhaps the first report of C. roseus suspension cultures 
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showing empirical data of cell differentiation within cell aggregates based on cell wall 

differences. Results clearly indicated that differentiation into sclerenchyma status is related 

to alkaloid expression and more importantly, to VC and VB synthesis. Analysis of cell 

differentiation analysis in bioreactors suggested that the key for VC and VB synthesis is the 

presence of sclerenchyma cells in the form of tracheary elements and sclereid-like cells and 

the presence of collenchyma cells to a lesser extent. These results are in agreement with a 

former study in suspension cultures of Cinchona ledgeriana, where tracheary elements were 

located at the periphery of aggregates and contained 90 % of total alkaloid titer (Hoekstra et 

al. 1990). Unfortunately, sclerenchyma differentiation in suspension cultures, particularly 

into tracheary elements, have mainly focused on woody issues and little is known about 

alkaloid production.  

The PGR regimen and light exposure as operating conditions offered a viable way for 

inducing cell differentiation, particularly into sclerenchyma cells, and thus VC and VB 

synthesis (Table 4.1-2). For studying wood formation using suspension cultures, plant growth 

regulators are usually used to promote differentiation into tracheary elements (Fukuda et al. 

1994; Roberts and Haigler 1994; Devillard and Walter 2014), though no clear consensus has 

been achieved.  

Results also showed that light exposure was capable of inducing differentiation into tracheary 

cells as shown in Table 4.1-2. (Möller et al. 2006) found similar results in callus cultures of 

Pinus radiata where increased light exposure (continuous light or 16 hd-1 photoperiod) 

increased differentiation into tracheary elements. However, cultures in bioreactors suggested 

that there may be other important variables affecting cell differentiation such as gas 

composition and more importantly, the physiological state of inoculated cells. For instance, 

in the first bioreactor with DO control, gas phase composition was partially conditioned by 

cells and only modified when necessary for maintaining DO at set point, while in the second 

bioreactor without DO control and with continuous aeration, gas phase was the same as 

ambient atmosphere. These differences in gas composition and inoculum used for the 

bioreactor cultures explained difference performance, though the same PGR regimen was 

used for both cultures. Any cell culture made will be unique due to its physiological state, 

record of subculture, and inherent heterogeneity (somoclonal variation, aggregates sizes, 

among others) (Deus-Neumann and Zenk 1984; Patil and Roberts 2013; Bhatia and Sharma 
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2015). The findings reported here are in-line with this. Thus, for optimization of culture 

conditions seeking cell differentiation and VC and VB synthesis for production processes, 

the use of experimental design that enables optimizing the required number of variables in 

one experiment is recommended. 

Results strongly suggested that there is a relationship between VC and VB synthesis capacity 

and sclerenchyma cells in suspension cultures. This fact implies that cells in suspension 

cultures globally contained the machinery for VC and VB synthesis provided some degree 

of differentiation within cell aggregates existed. Indeed, it was recently discovered that in 

vitro cultured cambial meristem cells contained complete sets of enzymes that are responsible 

for the production of VC and VB from vindoline, though vindoline supplementation was 

required (Zhang et al. 2015). Part of the in vivo metabolic pathway for vindoline has been 

localized in chloroplasts (De Luca and Cutler 1987) but not usually reported in heterotrophic 

cultures; however, there have been reports of vindoline-producing cultures under 

heterotrophic conditions (Scott et al. 1980; Naaranlahti et al. 1989). Thus, there must be 

alternative metabolic pathways for vindoline, VC and VB synthesis which could be active 

either during cell differentiation or in particular differentiated cells.  

Vindoline, derived from the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway, is usually 

perceived as the limiting precursor for in vitro synthesis of VC and VB. Indeed, it is believed 

that the last in vivo steps for vindoline synthesis occur within idioblast and laticifer cells in 

aereal tissue, though the principal steps of the MEP pathway for producing tryptamine and 

secologanin occur in other differentiated epidermal cells, requiring translocation of 

intermediates for vindoline synthesis (St-Pierre et al. 1999). More recently, in vivo expression 

of enzymes of the MEP pathway that were thought to be restricted to aerial tissue were also 

detected in phloem cells (Burlat et al. 2004). This has implied that in vivo expression of a 

particular enzyme could be undertaken by several types of differentiated cells in different 

tissues. This fact is likely the case for the suspension cultures which produced VC and VB. 

The in vitro micro-environment of cell aggregates containing parenchyma cells and 

sclerenchyma cells (tracheary cells and sclereids) could have mimicked the in vivo dynamics 

of translocation between phloem-aerial tissue to some extent, leading to VC and VB 

production from vindoline in parenchyma cells (Zhang et al. 2015). These phenomena thus 

require more attention for further research, particularly the identification of the degree of cell 
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differentiation, by using biochemical markers preferably in synchronous cultures for a deeper 

understanding of cell differentiation phenomena. Moreover, the relationship of the 

progression of cell differentiation with the expression of key enzymes for vindoline, VC and 

VB synthesis, as well as the effect of the micro-environment within cell aggregates of 

differentiated cells, should be addressed.  

Results provide important clues into the comprehension of in vitro culture performance for 

metabolites production requiring in vivo cell differentiation. They demonstrated the utility of 

taking into account cell differentiation for the further development of novel advanced 

processes of differentiated cell suspension cultures for producing valuable molecules, 

including biological medicines such as VC and VB. 
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4.1.1.1.2 Complement 1: Characterization of cell lines 

4.1.1.1.2.1 Material and methods 

 

For this characterization, the inoculum consisted of suspension culture already subcultivated 

four times. Volumes of 21 mL cell suspension culture were incubated in 50 mL flasks with 

aluminium foil closure, containing MS proliferation liquid medium for 14 days at room 

temperature (≈ 25 °C) and agitation (0.22 rcf) in a shaker, with either a 12 hd-1 photoperiod 

(photonic flux of 30 μmol.m-2 s-1) or 0 hd-1 (total darkness). Duplicate samples were taken at 

0, 3, 9, 11 and 14 days, and a single sample was taken on day 6.  

 

4.1.1.1.2.2 Results and discussion  

 

The apex, stem and leaf cell lines were first characterized during 14 days cultures, using 

either a 12 h-photoperiod or total darkness. The kinetic profiles of both conditions are 

presented in Figure 4.1-4. The maximum cell biomass was reached on day 11 for both 

treatments, with higher values for the 12 hd-1 photoperiod. It can be observed that the 

photoperiod drastically affected the pattern of C. roseus batch culture. However, although 

the light effect was quite evident on maximum cell biomass (One-way ANOVA, p≤0.01), the 

origin of the explant (leave, stem and apical meristem) had no effect neither in darkness nor 

in photoperiod (One-way ANOVA, p≤0.05).  

Culture sugar profiles were also compared in Figure 4.1-4 for cultures subject to darkness 

and photoperiod conditions. All cell lines preferentially consumed glucose than fructose at 

the beginning of culture, especially under a photoperiod regimen, as was also observed earlier 

in another study on C. roseus suspension cultures (Sagishima et al. 1989). Furthermore, while 

several authors have reported that maximum biomass is reached after substrate total 

depletion, both tested conditions in this work reached maximum biomass concentration when 

sugars were still present in the culture media. A likely explanation is depletion of nutrients 

or other factors causing growth arrest, such as auxin depletion(King 1976) or accumulation 

of toxic by-products. Unfortunately, the reason for growth arrest has not yet been clearly 

determined. 

The photoperiod strongly affected the way cells used carbon substrates as showed in Table 

4.1-3. Biomass-substrate yields for cell lines cultured in darkness are statistically different to 

those cultured in photoperiod (One-way ANOVA, p≤0.01). While the origin of the cell line 



4. RESULTS & DISCUSSION 

4.1 CHAPTER I – Plant suspension cultures for antileukemic agent production 

 

 

96 

 

(leave, stem and apical meristem tissues) had no impact on yields in darkness cultures (One-

way ANOVA, p≤0.05), in light condition the apex cell line yield was different to those of 

stem and leaf lines (One-way ANOVA, post hoc Tukey, p≤0.05). All yields for darkness 

treatments (Table 4.1-3) are in agreement with those reported previously in C. roseus 

suspension cultures (Pareilleux and Vinas 1983; van Gulik et al. 1989; Rho and André 1991), 

0.57, 0.6-0.78 and 0.31-0.35 [gbiomassg-1consumed sugars], respectively.  

 

Table 4.1-3. Catharanthus roseus cell lines characterization during suspension cultures in 

darkness or with 12 h d-1 photoperiod 

Cell line Apex Stem Leaf 

Light condition (hd-1) 12 0 12 0 12 0 

*Yx/s 

(gbiomass g-1consumed sugars) 

0.89 0.57 0.96 0.54 0.97 0.51 

VC (mgVC L-1suspension culture) 0.8 0.7 0.9 1.8 1.5 1 

VB (mgVB L-1suspension culture) 31 19 29 43 60 29 

 

* Yield based on total sugar uptake  

Cells after 4 subcultivations in suspension. All values at day 11th, except for VC and VB at day 14th  

 

The production of VC and VB by the three different lines cultured in darkness or photoperiod 

is shown in Table 4.1-3. All cell lines produced VB in greater amounts compared to the 

negligible observed productions of VC. Contrary to previous C. roseus calluses studies 

reporting loss of synthesis capabilities in darkness (Saiman et al. 2014), VC and VB were 

detected in all cultures independent of light exposure and cell line origin. This was 

particularly remarkable for the stem cell line cultured in darkness, which achieved the second 

largest amount of VB (43 mgL-1) and the largest VC amount (1.8 mgL-1). This result was 

partially in agreement with previous studies reporting that even in darkness conditions, 

Catharanthus roseus calluses with differentiated root cells were capable of producing VB 

(Miura et al. 1987). Indeed, some researchers have identified phloem and xylem systems in 

C. roseus callus cultures related to enhanced alkaloid production, especially vindoline, the 

main precursor of VC and VB (Zhao et al. 2001).  
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( ) Apex line, ( ) Stem line, ( ) Leaf line.  

 
Figure 4.1-4. Kinetics of glucose, fructose and cell biomass concentrations during batch 

suspension cultures of apex, stem and leaf cell lines, performed in darkness (right) or with 

12hd-1 photoperiod (left). 
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Based on these first results, further evaluation of these phenomena was carried out by 

performing long term-maintained suspension cultures of the leaf cell line, which achieved 

the largest production of VB (60 mgL-1) and the second largest production of VC (1.5 mgL-

1). The main objective was to evaluate in more detail the effect of some of the culture 

conditions, such as growth regulators and photoperiods, on cell differentiation and the impact 

on VC and VB production. Therefore, the work in the intended scientific article in (4.1.1.1.1) 

only used suspension cultures of the leaf cell line.  
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4.1.2 Conclusions of Chapter I 
 

The production of the biopharmaceutics VC and VB by C. roseus cells was investigated in 

suspension cultures, considering for the first time the cell differentiation analysis of cell 

aggregates. The effects of various operating conditions on culture performances, including 

the addition of PGR and light exposure, were evaluated. In particular, these culture conditions 

have been shown to affect cell differentiation. Moreover, cell differentiation into 

collenchyma and sclerenchyma cells was observed to be likely related in the production of 

VC and VB. Such conditions were then used to successfully produce them by a differentiated 

cell culture process.  

Analysis of differentiation dynamics in bioreactor cultures revealed the need to understand 

the complex process of differentiation to design enhanced processes leading to high 

parenchymal cell concentration firstly, and then secondly promoting differentiation for VB 

and VC production.  

These results provided important insights into the design of enhanced production processes. 

They demonstrated the utility of taking into account cell differentiation for the establishment 

of advanced processes in cell suspension cultures to produce valuable molecules, particularly 

biological medicines such as VC and VB. Therefore, cell differentiation is a promising 

Critical Process Parameter for monitoring and control, and then enhance the cell production 

processes. Consequently, monitoring of the cell culture process was focused on cell 

differentiation at bioreactor scale, which was undertaken in 4.4 Chapter IV (4.4.1.2).  
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4.2 CHAPTER II: EVALUATION OF CLASSIC CALIBRATION 

TECHNIQUES TO MONITOR CELL CULTURES 

4.2.1 Introduction 
 

 

Cell cultures provide a platform for biopharmaceuticals essential for treating several diseases. 

Such processes are complex and require strict control in order to assure drug qualities and 

properties and thus patient safety. Nowadays, only some physical parameters (temperature, 

pH, among others) are systematically monitored and controlled while chemical and 

biological parameters, which can also strongly impact drug properties, are usually monitored 

off-line; this implies delays between sampling and analysis that could compromise control 

strategies.  

Monitoring based on process analyzers using NIRS are promising techniques since they can 

perform multicomponent analysis without sampling and in real-time when used in in-line 

modes. Indeed, several studies have shown the potential of this technology in animal cell 

culture processes. However, its application in industry has been limited in production 

bioreactors. Animal cell culture processes are highly dynamic and thus a challenging matrix 

for monitoring. As far as can be ascertained, such complex processes have only been 

addressed by the use of linear regression methods for building calibration models in order to 

estimate chemical or biochemical variables, based on NIR spectra.  

Consequently, the aim of this chapter has been to evaluate the pertinence of current linear 

approaches for calibrating in cell culture-based processes. Then, a new approach has been 

adopted, seeking enhancement of estimating the power of models. This innovative approach 

tried to take into account the nature of the cell culture process to some extent.  The great 

majority of results from this chapter have been reported in an article published in 

Biotechnology Progress and are thus organized in this format.  
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4.2.1.1 Interest of Locally Weighted Regression to overcome non-linear effects during in 

situ NIR monitoring of CHO cell culture parameters and antibody glycosylation 

 

Daniel A. Zavala-Ortiz1,2, Bruno Ebel1, Meng-Yao Li1, Dulce Ma. Barradas-Dermitz2, Maria 

G. Aguilar-Uscanga2, Patricia M. Hayward-Jones2, Annie Marc1, Emmanuel Guedon1 

 

1- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, 

LRGP, 2 avenue Forêt de Haye, TSA 40602, 54518 Vandœuvre-lès-Nancy, France. 

2- Instituto Tecnológico de Veracruz: Calz. M.A. de Quevedo 2779, Veracruz, Ver. 

Mexico. 

 

4.2.1.1.1 Abstract 

Animal cell culture processes have become the standard platform to produce therapeutic 

proteins such as recombinant monoclonal antibodies (mAb). Since the mAb quality 

could be subject to significant changes depending on manufacturing process conditions, 

real-time monitoring and control systems are required to ensure mAb specifications 

mainly glycosylation and patient safety. Up to now, real-time monitoring glycosylation 

of proteins has received scarce attention. In this paper, the use of near infrared (NIR) to 

monitor mAb glycosylation has been reported for the first time. Whereas monitoring 

models are mainly constructed using linear Partial Least Squares Regressions (PLSR) 

evidences presented in this study indicate nonlinearity relationship between in situ 

captured spectra and compound concentrations, compromising the PLSR performances. 

A novel and simple approach was proposed to fit non-linearity using the Locally 

Weighted Regression (LWR). The LWR models were found to be more appropriate for 

handling information contained in spectra so that real-time monitoring of cultures was 

accurately performed. Moreover, for the first time, the LWR calibration models allowed 

mAb glycosylation to be monitored, in a real-time manner, by using in-situ NIR 

spectroscopy. These results represent a further step towards developing active-control 

feedback of animal cell processes, particularly for ensuring properties of biologics. 

 

4.2.1.1.2 Introduction 

 

The production of biologicals, especially recombinant monoclonal antibodies (mAb), 

remains a challenge due to the structural complexity of these molecules and their sensitivity 
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to changes in the manufacturing process. That is why strict quality control systems are 

required to ensure mAb specifications and patient safety. For that, regulatory agencies 

proposed the quality by design (QbD) strategy (Rathore and Winkle 2009), which is rendered 

possible through the process analytical technology (PAT) approach (Yu 2008; Rathore et al. 

2010; Yu et al. 2014). The main objective is to real-time monitor the concentrations of some 

process parameters, such as viable cell, nutrient and metabolite concentrations, whose 

variability may have an impact on mAb quality attributes (Teixeira et al. 2009a). 

As one of the main quality attributes, glycosylation pattern confers chemical and therapeutic 

properties to mAb (serum half-life, immunogenicity, antibody-dependent cellular 

cytotoxicity and complement-dependent cytotoxicity) (del Val et al. 2010; Kayser et al. 2011; 

Lingg et al. 2012). Therefore, its control is essential to ensure efficacy of the product and 

safety for patients. However, glycosylation monitoring is usually performed at the end of the 

culture process because its analysis is time- and labour-consuming (Huhn et al. 2009). Even 

in advanced production processes supporting the PAT initiative, glycosylation-monitoring 

still requires some sample handling through the semi-automatic off-line analysis (Alvarez et 

al. 2011; Doherty et al. 2013; Wang et al. 2017). Moreover, delays due to off-line analysis 

may also compromise real-time control of the process. A new challenging objective for PAT 

is thus to control mAb glycosylation as well as cell metabolism using on-line spectroscopy 

(Hossler et al. 2009; Hossler 2011; Berry et al. 2016; Zhang et al. 2016). Consequently, 

accurate monitoring models must be developed so that advanced active feedback control 

systems for controlling processes could become feasible.  

In recent decades, vibrational NIR and Raman spectroscopies in combination with 

multivariate data analysis have been proven to be promising tools for monitoring cell culture 

process parameters (Cervera et al. 2009; Abu-Absi et al. 2011; Li et al. 2016; Berry et al. 

2016). The most widely used multivariate method for developing calibration models from 

spectroscopic data is Partial Least Squares Regression (PLSR) (Lourenço et al. 2012). PLSR 

maps linearly spectroscopic spectrum into a low-dimensional space of coordinates called 

latent variables (LV), which are employed to generate the regression or calibration equations 

using only linear combinations (Höskuldsson 1988). In this context, in situ spectroscopic 

monitoring has been claimed as an ideal analysis method since it provides real-time 



4. RESULTS & DISCUSSION 

4.2 CHAPTER II – Evaluation of classic calibration techniques to monitor cell cultures 

 

 

 

103 

 

multicomponent information directly without sample treatments, thus avoiding 

contamination risks and perturbation of compound properties (Arnold et al. 2003). 

Nevertheless, this on-line implementation remains a challenge because analyses can be 

subject to perturbations due to the dynamics of the cell culture. Indeed, scattering compounds 

are generated during cultures, such as cells, cellular debris or mAb aggregates. Their 

accumulation in the bioreactor may induce modifications of the scattered light reaching the 

detector, causing changes in apparent absorbance, and thus resulting in non-linear spectra 

slopes changes (Ge et al. 1994)23. These effects, which induce or increase the non-linear 

relationships between spectra and compounds, may limit the capabilities of classical linear 

regression methods, particularly PLSR.  

Off-line spectroscopy and PLSR have been successfully used to perform monitoring of 

glycoproteins, particularly Raman spectroscopy (Brewster et al. 2011). However, clarified 

samples with limited scattering compounds, have been usually required to develop accurate 

calibration models for glycoproteins (Li et al. 2013). Such current off-line approaches cause 

monitoring delays that could compromise real-time control of the process. As far as can be 

ascertained, while only one study has reported in situ mAb quality monitoring by Raman 

spectroscopy and PLSR (Li et al. 2018b), such kind of monitoring using NIR spectroscopy 

has not been reported yet. This could be due to the complexity of the NIR spectra in scattering 

systems and the need of chemometric approaches adapted to such systems (Næs 2004; Huang 

et al. 2010). Taking into account the limitations of linear regression methods, several other 

methods and techniques are available to extract the information from spectra and overcome 

non-linearity during the calibration process. They include deletion of non-linear spectra 

variables, addition of non-linear extra-terms to calibration equations, or use of other 

regression methods (Verdú-Andrés et al. 1997; Blanco et al. 1999; Xiaobo et al. 2010; 

Mehmood et al. 2012). The studies dealing with animal cell culture monitoring have been 

mostly restricted to selection of the best spectra variables using linear regressions. However, 

such approaches fail to properly address potential non-linear relationships between spectra 

variabilities and compound concentration changes during cell cultures.  

One way to solve non-linear behaviour using the widely known linear regression methods is 

to perform regression locally, such as the Locally Weighted Regression (LWR) method. This 
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method aims to model non-linearity using several local linear regressions (Cleveland and 

Devlin 1988). LWR requires defining the local area that contains the sample to be predicted. 

Then, each point in this local region is weighted according to its distance from the sample. 

Thus, in addition to the generation of the regression function for each local area, other 

parameters have to be determined in order to determine the local area and the point weights 

(Centner and Massart 1998). Consequently, a local linear calibration equation has to be 

generated using local data, each time a prediction is required. In contrast to global regressions 

that treat all the regression surface at the same time, as either linear or non-linear, LWR 

allows modelling the non-linear regions without compromising linear region predictions. 

This approach seems particularly adequate for animal cell culture processes, in which linear 

and non-linear behaviour may arise differently during exponential, stationary or declining 

growth phases of cell cultures, especially because of light scattering by cells, rendering 

parameter monitoring difficult.  

Therefore, the aim of this paper was to propose an adequate regression method for in-line 

monitoring of CHO cell cultures in a bioreactor, including real-time analysis of mAb 

glycosylation site occupancy, by using in-situ NIR spectroscopy. Firstly, it assessed the 

capacity of PLSR method to handle eventual non-linear behaviour during animal cell 

cultures. Secondly, the LWR method was proven capable of dealing with PLSR limitations 

so that in situ monitoring of various culture parameters as well as mAb concentrations and 

glycosylation patterns throughout batch cultures was possible. 

4.2.1.1.3 Materials and methods 

 

Cell cultures and NIR spectra acquisition 

The genetically modified DG44 CHO cell line (CHO M250-9), producing a human anti-

Rhesus D mAb, was kindly provided by Bioprocessing Technology Institute (Singapore). 

The culture medium was a protein-free medium mixture consisting of PF-CHO (HyClone) 

and CD-CHO (Thermo Fisher Scientific) in a 1:1 volume ratio, supplemented with 4 mM L-

glutamine (Sigma Aldrich) and 0.1 % pluronic F-68 (Sigma Aldrich). Cell cultures were 

performed in 2 L benchtop bioreactors (Pierre Guérin) with 1.5 L working volume. The set 

points for all cultures were 37 °C, 50 % dissolved oxygen, pH 7.2 and 90 rpm. Six cultures 

were performed in order to obtain off-line measurements, which cover bioprocess variability 
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(3 batch, 2 feed-harvest, 1 batch with glucose spiking). In situ spectral scanning of bioprocess 

culture media was carried out using a NIR transflectance probe with 1 mm path length 

(Precision Sensing Devices), connected to the Antaris II spectrometer (Thermo Fisher 

Scientific). Each NIR spectrum corresponded to an average of 128 scans with an 8 cm-1 

resolution from 4,000 to 10,000 cm-1 wave number (i.e. 2,500 – 1,000 nm wavelength).  

 

Off-line measurements 

Viable cell density (VCD) was measured using the Vi-Cell XRTM cell counter (Beckman 

Coulter). Off-line concentrations of glucose, lactate, glutamine and mAb were determined 

with enzymatic kits using the automated photometric analyzer GalleryTM (Thermo Fisher 

Scientific). Using UHPLC-MS as previously described (Li et al. 2018b), mAb glycosylation 

heterogeneity was elucidated.   

 

Development of NIR calibration models with chemometric methods 

Calibration spectra was randomly partitioned into calibration (80 %) and validation (20 %) 

sets. The calibration set involved 134 samples, while the validation 34. A maximum of 4 

observations were deleted when they were identified as influential outliers (Hotelling's T-

square method, p: 0.95) (Næs 2004). Firstly, in order to generate the PLSR calibration models 

for concentration of viable cells, glucose, lactate, glutamine, mAb and non-glycosylated 

mAb, special attention was given to NIR spectra pre-processing. Selection of spectra pre-

processing methods was an exhaustive qualitative process to determine and mitigate additive-

multiplicative effects and wavelength-dependent baseline variation (Huang et al. 2010). Not 

less than 30 pre-treatments and their combinations were compared based on model 

performance evaluated by the root mean squared error of cross-validation (RMSECV) and 

the root mean squared error of prediction (RMSEP). RMSECV and RMSEP allow a direct 

measure of accuracy using calibration data and independent data respectively. A model with 

lower RMSECV or RMSEP is considered more accurate. The Relative Error (RE) was also 

used to evaluate the models. RE is the relationship of RMSECV or RMSEP with the 

maximum concentration of a compound during the calibration process. It is used as a 
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contextualised error of a model so that comparison of accuracy be more meaningful to 

expected measures during real-time calculations. The particular spectra pre-treatment that led 

to higher accuracy for a compound PLSR model was given in Table 4.2-1. 

 

Table 4.2-1. Spectral pre-processing used for PLSR and LWR models 

 PLS models LWR models 

Viable cells 1stderivative (15, 2,1), Abs, Smoothing (11, 6) MSC (mean) 

Glutamine Detrend Detrend, SNV 

Glucose SNV, 1stderivative (15, 1, 1), Abs MSC (mean), 1stderivative (9, 1, 1) 

Lactate Detrend, SNV Detrend 

mAb MSC (mean), Detrend, 2nd derivative (21, 2, 2), Abs MSC (mean), Detrend 

NG-mAb Detrend, MSC (mean), 2ndderivative (15, 2, 2) 
Detrend, MSC (mean), 2ndderivative 

(15, 2, 2) 

MSC: Multiple Scatter Correction; SNV: Standard Normal Variate; Abs: Absolute value; OSC: Orthogonal 

Scatter Correction; Values for derivatives: filter width, polynomial order, derivative order 

 

Subsequently, calibration models were generated using the LWR method. An optimization 

process was carried out to determine the local areas for regression in terms of number of local 

points (LPs) and the level of spectra compression in term of principal components (PC) (Næs 

2004). LP is the number of nearest calibration samples in the principal component space to 

be used for a particular local regression, and it represents a good measure of non-linearity. A 

model with few LPs suggests the presence of strong non-linearity, since more local 

regressions based on only few samples are needed to properly outline the non-linear 

relationship between spectra and compounds. As PC is a linear spectrum mapping procedure, 

it will require more PC to fit a non-linear relationship, then a large number of PC used in a 

LWR model also suggest the presence of non-linearity. Parallel to a former optimization, a 

spectrum pre-treatment determination approach as used for PLRS was also performed. The 

particular spectrum pre-treatment that led to higher accuracy for a compound LWR model is 

given in Table 4.2-1.  

As established for analytical procedures, linearity means the ability of a model to obtain 

results directly and linearly proportional to actual concentration within a compound 

concentration range (International Conference on Harmonisation 1996). Then non-linearity 
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and incapacity of models to handle it, can be detected by a systematic deviation of residuals 

from the zero line, usually with a curve tendency (Næs 2004). In order to properly detect 

non-linear behaviour during calibration, residual plots (off-line measured values against 

difference between off-line measurements and in-line calculated values) were analysed as 

suggested elsewhere (Slutsky 1998; Centner et al. 1998). The presence of non-linear 

relationships was confirmed by visual inspection of these plots. If models are capable to 

handle spectra linearly in relation to concentration, residuals have a random distribution 

around the zero line. On the contrary, non-linearity is detected by a correlation of residuals, 

usually in a curve profile. Once non-linear behaviour is visually found, its management by 

models is statistically taken into account by evaluation of residual correlation by the Durbin-

Watson test (Mark and Workman 2007). This test evaluates the null hypothesis that there is 

no correlation between successive residuals (random distribution of residuals around the zero 

line), which is likely the case if the model estimates concentration from spectra linearly to 

actual concentration. Rejection of the null hypothesis indicates that correlation exists and that 

the model leads systematically to mis-estimation of concentrations because of non-linear 

relationship existing between spectra and concentration. Multivariate calibration models and 

statistical analysis were carried out using PLS-Toolbox 8.2.1 (Eigenvector Research Inc.) 

and Statistics and Machine Learning Toolbox R2016a in MATLAB® environment 

(MathWorks Inc.).  

 

In situ monitoring of cell cultures 

To evaluate the predictive capacity of the models, NIR spectra were automatically acquired 

in situ every 20 min throughout CHO cell cultures. The optimized NIR calibration models 

were then used to perform real-time calculation of the concentrations of main culture medium 

components (viable cells, glucose, lactate, glutamine, mAb) as well as of the non-

glycosylated mAb.  
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4.2.1.1.4 Results and discussion 

 

NIR spectroscopy has been proven as useful tool to monitor animal cell cultures under the 

PAT approach. However, the capabilities of NIR models to detect glycosylation of produced 

proteins in situ remain unknown. Moreover, in situ NIR spectroscopy monitoring still 

requires to be improved so that more accurate estimations of compound concentration could 

be used to also monitor cell metabolism. As far as can be ascertained, only PLSR has been 

used to monitor cell cultures in situ based on NIR spectroscopy. In this study, PLSR and 

LWR models were generated and compared to estimate CHO viable cells, glucose, lactate 

and glutamine concentrations. In addition, models for total mAb and non-glycosylated mAb 

(NG-mAb) concentrations were also generated with the aim of monitoring the quality of 

mAbs produced during a process.  

 

Development and analysis of NIR models based on PLSR and LWR methods 

 

Development of PLSR models for monitoring of animal cell culture process   

Evaluation of PLSR models comprised different statistical estimators of accuracy, precision 

and linearity. The coefficient of determination (R2) is a parameter used to evaluate how the 

model explains concentration variability based on spectrum variability. Coefficients with 

values close to one indicate that models relate spectra variability to concentration, while 

values close to zero suggest no relationship between spectra and concentration. In this 

context, PLSR was capable of relating spectral variabilities to concentrations for viable cells 

and glucose, as shown by the high R2 values in Table 4.2-2. Consequently, PLSR models 

achieved high accuracy during the calibration and prediction steps as indicated by RMSECV 

and RMSEP respectively. However, PLSR showed limited capacity to relate spectral 

variabilities to lactate and glutamine concentrations as indicated by the low R2 values. PLSR 

models for such compounds resulted in relative errors above 10 %, usually perceived as the 

maximum tolerated value for NIR calibration models (Burns and Ciurczak 2008). This 

phenomenon was also observed for the mAb and NG-mAb PLSR models, with 

approximately 10 and 20 % of relative errors of prediction (R.EPRE) respectively, indicating 
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that PLSR is not the appropriate multivariate technique for monitoring mAb concentration 

and quality during animal cell culture processes. 

 

Table 4.2-2. Statistical analysis of calibration models using PLSR or LWR method 

 
Viable 

cells 
Glucose Lactate Glutamine mAb 

NG-

mAb 

P
L

S
R

 

RMSECV 6.15 1.94 3.22 0.44 35 19 

RMSEP 8.34 2.51 4.38 0.50 53 18 

R2CV 0.95 0.95 0.78 0.85 0.84 0.39 

R2PRE 0.95 0.93 0.67 0.81 0.83 0.50 

R. ECV (%) 6.47 7.19 10.73 10.23 9.21 19.00 

R. EPRE (%) 8.78 9.30 14.60 11.63 13.95 18.00 

LV 5 6 5 5 5 3 

L
W

R
 

RMSECV 4.97 3.91 1.78 0.29 37 7.1 

RMSEP 5.50 3.62 2.48 0.42 45 11 

R2CV 0.97 0.81 0.87 0.93 0.86 0.92 

R2PRE 0.97 0.86 0.82 0.87 0.84 0.80 

R. ECV (%) 5.23 14.48 5.93 6.74 9.74 7.00 

R. EPRE (%) 5.89 13.41 8.27 9.77 11.84 11.00 

LP - PC 13- 6 5 - 4 13 - 3 7 - 3 21 - 4 15 - 15 

Units for RMSECV and RMSEP are the same: (cells.mL-1) x105 for viable cells, mg.L-1 for mAb and NG-mAb, and mM 

for glucose, lactate and glutamine.   

RMSECV: root mean square error of cross-validation; RMSEP: root mean square error of prediction; R2CV, R2PRE: 

correlation coefficients of cross-validation or prediction; R. ECV, R. EPRE: relative errors (in relation to maximum variable 

concentration) for cross validation (CV) or prediction (PRE); LV: number of latent variables; LP: number of local points; 

PC: number of principal components; NG-mAb: non-glycosylated mAb.  

 

Nonlinear relationships between cell culture parameters and spectra  

The way a model fits data induces some specific structure distribution of the residuals. If a 

linear model such as PLSR fits a curve relationship between spectra and compound 

concentrations, residuals will have a systematic deviation. In contrast, if the linear model fits 

a linear relationship, the residuals would scatter randomly from the zero line. This criterion 

was then used to graphically detect non-linear relationships and adequateness of PLSR 

(Figure 4.2-1). A clear hyperbolic profile was observed for NG-mAb residuals, indicating 
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that a strong non-linear relationship occurred between spectra and NG-mAb concentrations 

for the whole concentration range tested. In such a case, a linear PLSR model is inadequate 

and therefore non-linear regression approaches are required to generate proper calibration 

models. This non-linear behaviour was also observed for mAb to a lesser extent. In addition, 

a flattened parabola profile was observed for viable cells and lactate concentrations, while a 

curve tendency was detected for glutamine at concentrations over 3 mM. In these cases, 

PLSR is considered as adequate only for the concentration range where a linear relationship 

between actual and estimated compound concentrations is observed, corresponding to a 

random distribution of the residuals.  
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Figure 4.2-1. Detection of non-linearity by inspection of residual distribution within the 

concentration range tested during calibration for viable cells, glutamine, glucose, lactate, 

mAb and NG-mAb concentration 
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Non-linearity was then statistically analysed by the use of the Durbin-Watson test. The test 

provides a d-value related to the nature of the residual distribution, which is then used to 

evaluate correlation taking into account the nature of the calibration set. Results from this 

analysis revealed correlation of residuals for all PLSR models (Table 4.2-3), which 

particularly indicated a strong non-linearity for lactate and NG-mAb. These results 

suggested, from a statistical point of view, the inability of the PLSR to obtain results directly 

and linearly proportional to actual concentrations. Other widely used linear approaches, such 

as Principal Component Regression (PCR), has also been assessed with similar results (data 

not shown). This is in agreement with a former study reporting similar or even lower 

performances of these linear approaches (Khajehsharifi et al. 2017). Therefore, the novel 

implementation of other regression methods considering linearity analysis must be 

considered. 

 

Table 4.2-3. Results of Durbin-Watson analysis 

Compound PLSR LWR 

d-value Conclusion d-value Conclusion 

Viable cells 0.73 Nonlinear 1.78 Linear 

Glutamine 0.99 Nonlinear 1.71 Nonlinear 

Glucose 1.65 Nonlinear 1.75 Linear 

Lactate 0.40 Nonlinear 1.92 Linear 

mAb 0.89 Nonlinear 1.86 Linear 

NG-mAb 0.46 Nonlinear 0.8 Nonlinear 
 

The critical d values for Durbin-Watson at α=0.05 are dL = 1.72 and dU = 1.74. 

If d < dL the null hypothesis is rejected, the presence of correlation in residuals is indicated (non linearity). 

If d > dU the null hypothesis cannot be rejected, the correlation in residuals is considered to be negligible (no 

nonlinearity). 

If dL < d < dU the test is inconclusive. 

 

The presence of non-linear behaviour, which has limited the performance of PLSR, may be 

explained by the complexity of the cell culture medium used during the process. As NIR 

spectra contain both physical and chemical information of the samples, it is likely that non-

linearity resulted from a wide variety of phenomena, such as variations of light diffusion 

profiles during cultures (Miller 1993). Chemical phenomena are mainly related to changes in 

the interaction of several absorbing functional groups, which may lead to shifts of absorption 

bands or to effects such as the Fermi and Darling-Dennison resonances (Siesler 2010). Such 

resonance phenomena might require management of non-linearity relationship to properly 
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extract the information within spectra (Agranovich and Kamchatnov 1999). Therefore, the 

use of the LWR method has been evaluated with the aim of overcoming the limitations of the 

linear PLSR method.  

 

Development of LWR models to handle nonlinear relationships and comparison with PLSR 

models. 

The development of LWR models firstly comprised an optimization process to select the size 

of local areas and the number of PC. If the size of local areas is small, more local regressions 

must be launched to fit global non-linearities, which also influence the way information 

within spectra should be handled. This is particularly related to the number of PC required to 

perform local regressions. Consequently, a compromise between local areas size, in terms of 

LPs and PC had to be found to avoid overfitting LWR models. The final structure of LWR 

models is given inTable 4.2-2. The size of local areas in term of number of local points varied 

from 5 to 21 for the different compounds, which represented approximately 10 % of the 

calibration set and depicted a strong non-linear behaviour. This non-linearity is likely 

attributed to the dynamics of the culture process since the locations of the LPs used for the 

local regressions were mainly determined as a function of culture progression. On the other 

hand, a high number of PC likely depicts a non-linearity caused by an inherent non-linear 

relationship between spectra and concentration. Once the global non-linearity was broken, 

relatively few PC were required to build the local regressions for viable cells, lactate, 

glutamine and mAb concentration. However, for NG-mAb and glucose, a relatively high 

number of PC, depending on the number of local points, was required. The LWR models 

related concentrations of lactate and glutamine with spectral variability more efficiently, as 

shown by the higher R2 in contrast with results obtained using PLSR (Table 4.2-2). This 

enhanced management of spectral variability by the LWR method resulted in a reduction of 

RMSECV and RMSEP values, which corresponded to decreased relative errors (R.E) of 

about 35 % for lactate and glutamine. Such reductions allowed concentration estimates with 

R.E lower than 10 %. The LWR method also enhanced the accuracy for a viable cell model, 

resulting in a reduction of R.E of approximately 30 %. LWR displayed a similar performance 

to PLSR for mAb concentration whereas PLSR was higher for glucose (Table 4.2-2).  
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A remarkable characteristic of the LWR method was its capability to handle the strong non-

linearity behaviour previously detected between spectra and concentration, as shown by the 

higher R2, particularly during cross-validation, in comparison to PLSR (Table 4.2-2). 

Analysis of residual plots (Figure 4.2-1) confirmed that in general, LWR not only enhanced 

accuracy, but also drastically limited the effects of non-linearity, particularly for NG-mAb. 

This was statistically confirmed by the Durbin-Watson test (Table 4.2-3), which indicated 

that, excepting NG-mAb and glutamine models, all LRW models properly handled non-

linearity and estimated compound concentration linearly to actual concentrations. In this 

context, the LWR method allowed the development of a calibration model with relative errors 

of approximately 9 %, opening the possibility to monitor the quality of mAb in terms of 

glycosylation site occupancy. As a general rule, the LWR method appeared to be the most 

appropriate model method for the majority of compounds, particularly NG-mAb.  

 

Real-time monitoring of animal cell culture processes 

Performances of prediction models based on both PLSR and LWR methods were evaluated 

during CHO cell culture processes producing mAb in a discontinuous mode. In-line 

monitoring of viable cells, glutamine, glucose, lactate, mAb and NG-mAb concentrations 

was carried out using NIR spectroscopy (Figure 4.2-2). In-line predictions were compared 

with off-line measurements to verify model accuracy. In all cases, the LWR method showed 

enhanced performance during real-time monitoring.  

Contrary to what was expected on the basis of a relative high R2 (Table 4.2-2) the PLSR 

model was not able to monitor viable cell concentrations efficiently from approximately 100 

h of culture. From this moment, the model was unable to estimate viable cell concentrations 

from NIR spectra. This unsatisfactory result is in agreement with former reports (Henriques 

et al. 2009; Clavaud et al. 2013) that pointed out difficulties to model viable cell 

concentration from NIR spectra due to scattering effects. For example, only limited results 

of PLSR models of viable cell concentrations were obtained despite the high number of 10 

LV required (Henriques et al. 2009). In addition, even with promising PLSR models 

established for viable cell concentrations, low precision and accuracy appeared once viable 

cell densities exceeded 80x105 cells.mL-1 (Clavaud et al. 2013) . The lack of accuracy of the 
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results could be attributed to the non-linear relationship between spectra and viable cell 

concentrations. This was previously observed by the right segment of the parabola in the 

residual plot for viable cell concentrations, which corresponds to concentration values over 

75x105 cells.mL-1 (Figure 4.2-1). Thereby, a more reliable comparison between PLSR and 

LWR models, with similar R2 and relative errors, necessarily requires this linearity analysis 

to be performed in order to better evaluate the calibration process for in-line monitoring of 

animal cell cultures. A similar phenomenon was observed for the glucose PLSR model, 

which was even better than LWR during calibration. However, during prediction, LWR 

accurately monitored glucose concentration during the whole culture while the PLSR model 

miss-estimated the concentrations at the beginning and end of the culture. This behaviour 

was also observed for glutamine and lactate (Figure 4.2-2). The analysis of spectra location 

in the PLSR space revealed that for the first 10 h of culture they were totally outside the 

calibration space at 95 % confidence limit (data not shown). Thus, the observed mis 

prediction at the beginning of the culture could be attributed to an inappropriate 

extrapolation. On the contrary, the LWR method was shown to be more robust during this 

phase since culture spectra were always incorporated into the local PLSR space in order to 

perform a regression.  

The mis estimations of lactate, glucose and glutamine concentrations after 120 h of the 

culture by PLSR model could also be partially explained by the non-linearity phenomenon 

as formerly observed in Figure 4.2-1. They could also be attributed to the lack of precision 

or to the presence of noise since even the LWR method showed prediction errors, although 

weaker, after 120 h. In addition, after 120 h, the culture is characterised by a decrease in cell 

viability, resulting in the release of intracellular metabolites. Such metabolites could interact 

with the monitored molecules causing discrepancies in NIR spectra.  

This lack of precision of PLSR models at the end of cultures has already been reported, 

probably due to unknown components within some batches, while other batches showed 

good predictions (Henriques et al. 2009). Most of the studies, which present the use of PLSR 

as an efficient method to predict animal cell culture parameters using NIR spectroscopy, do 

not consider concentration ranges as broad as those reported here, neither the cell death-phase 

for the process monitoring (Arnold et al. 2003; Cervera et al. 2009; Qiu et al. 2014). Some 
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other authors have overcome non-linearity behaviour of NIR monitoring models by using at-

line analyses of clarified culture medium, as already described (Rhiel et al. 2004; Hakemeyer 

et al. 2012). In this context, LWR has been proven as a promising method to perform in situ 

monitoring since it allowed calibration in a wide concentration frame, and also considered 

the nature of the culture medium.  
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Figure 4.2-2. Real-time monitoring of a CHO cell culture in batch reactor by in situ NIR 

spectroscopy. Comparison of in-line prediction by models using PLSR or LWR regression 

methods with experimental off-line results. 
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Real-time monitoring of mAb concentration and quality during animal cell culture 

processes 

Previously developed methods using PLSR and LWR were used to monitor total mAb 

concentration and non-glycosylated mAb. While the PLSR method showed a good trend for 

the evaluations of total mAb concentrations during the first days of cell culture, a reduced 

precision was observed from 140 h. This resulting mis estimation was likely due to the 

enrichment of NG-mAb within the total mAb molecules. Consequently, results indicated that 

even models apparently able to monitor properly total mAb concentration can be strongly 

influenced by changes in mAb properties. This justifies the use of other regression methods, 

as confirmed by the good performance of LWR prediction model of total-mAb (Figure 4.2-

2). 

The glycosylation pattern is a key quality parameter of mAb since it confers important 

properties such as ADCC or serum half-life (del Val et al. 2010; Kayser et al. 2011; Lingg et 

al. 2012). Therefore, its monitoring and control during process productions as proposed by 

the PAT initiative, is mandatory to ensure efficacy of mAb and safety of patients. 

Glycosylation analysis is time-consuming and usually performed by off-line approaches, that 

may induce a monitoring delay, and then compromise corrective action in order to maintain 

desired glycosylation properties. In this work, in situ NIR spectroscopy capability to real-

time monitor non-glycosylated mAb concentrations has been proven, provided the LWR 

method was used in place of the PLSR.  

The performance of PLSR to monitor NG-mAb concentrations was first evaluated. As shown 

in Figure 4.2-2, the PLSR method completely failed to predict accurately NG-mAb 

concentrations throughout the culture, accordingly to low R2 values (Table 4.2-2). This result 

was expected because during calibration, a strong non-linear relationship between residuals 

and NG-mAb concentrations was observed (Figure 4.2-1), indicating the need for a more 

efficient regression method to monitor NG-mAb concentrations by in situ NIR spectroscopy. 

Indeed, the use of the LWR method made it possible to reduce the prediction errors and to 

obtain a good monitoring of NG-mAb concentrations (Figure 4.2-2).  
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4.2.1.1.5 Conclusions 

 

In this study, experimental evidence of non-linear parameter behaviour in animal cell culture 

processes was provided. Consequently, the widely used PLSR method was incapable of 

relating spectra with compound concentrations, indicating that such a widely used regression 

methods is not always appropriate for the monitoring of animal cell culture processes. The 

novel use of the LWR method was shown to overcome PLSR limitations, which led to more 

accurate predictions of culture compound concentrations. Using NIR spectroscopy, the 

enhanced capability of LWR to handle non-linearities permitted for the first time, the in-situ 

monitoring of mAb glycosylation site occupancy. Overall, the results highlighted the fact that 

in situ NIR spectroscopy could have a broader potential as a PAT tool provided that effect of 

culture dynamics and nonlinearity be considered. In this context, NIR spectroscopy could be 

used to develop innovative spectroscopic calibration models so that effective control 

approaches to guarantee quality of antibodies could be implemented.  
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4.2.1.2 Complement 1: Performance of PCR models 

 

 

As formerly stated, PCR regression was also analysed in terms of calibration itself and for 

real-time monitoring performance. PCR had a similar performance to PLSR either during 

calibration (Table 4.2-4) or during real-time monitoring. The same batch used for validation 

in the publication was used for analysing the nature of PCR regression for real-time analysis.  

 

Table 4.2-4. Statistical analysis of PCR models 

 Glucose Lactate Glutamine mAb NG-mAb VCD 

P
C

R
 

PC 6 5 5 5 5 5 

RMSECV 2.55 2.59 0.48 0.031 0.018 6.77 

RMSEP 2.65 4.08 0.58 0.045 0.016 8.34 

R2CV 0.91 0.84 0.81 0.88 0.41 0.93 

R2PRE 0.92 0.69 0.75 0.86 0.57 0.92 

R. errorCV 

(%) 
9.44 8.63 11.16 8.16 18.00 7.13 

R. errorPRE 

(%) 
9.81 13.60 13.49 11.84 16.00 8.78 

Spectral 

treatment 
SNV, 

1st 

derivative 

(11, 1,1) 

Detrend, 

2nd 

derivative 

(121,6,2), 

abs 

MSC, 

detrend, 

abs 

MSC, 

detrend 

Detrend, 

MSC, 

1st 

derivative 

(15,2,1) 

MSC, 

1st 

derivative 

(15,2,2) 

 

Units for RMSECV and RMSEP are the same: (cells.mL-1) x105 for viable cells, mg.L-1 for 

mAb and NG-mAb, and mM for glucose, lactate and glutamine. RMSECV: root mean 

square error of cross-validation; RMSEP: root mean square error of prediction; R2CV, R2PRE: 

correlation coefficients of cross-validation or prediction; R. errorCV, R. errirPRE: relative 

errors (in relation to maximum variable concentration) for cross validation (CV) or 

prediction (PRE); LV: number of latent variables; LP: number of local points; PC: number 

of principal components; NG-mAb: non-glycosylated mAb. 

 

 

 

Calibration based on PCR firstly reduced spectral dimensions in terms of principal 

components and then regression is performed. Thus, regression is completely based on the 

trajectory of the cell culture processes (Figure 4.2-3-a). Then misprediction of PCR in some 

situations as in the beginning of cultures (Figure 4.2-3-b) were due to extrapolation issues.  
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For instance, during the first 14 h of culture, PCR models were incapable of estimating lactate 

concentration, which was likely caused by the fact that spectra (violet dots in Figure 4.2-3-

a) for that particular period were outside the calibration space (dashed circle in Figure 4.2-3-

a).  

 

 

 
Figure 4.2-3. Analysis of PCR performance for real-time monitoring: a. Trajectory of 

culture process, b. performance of PCR model for real-time monitoring of lactate 

concentration  

 

 

 

These results agreed with those for PLSR models in the article and pointed out the 

vulnerability of global linear models for fitting cell culture processes. Moreover, PCR was 

incapable of handling non-linear relationships, for example the non-linear relationships for 

lactate at the end of cultures (Figure 4.2-3-b). Overall, as for PLSR models, PCR seemed not 

a robust regression technique for cell culture monitoring using NIR spectroscopy.  
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4.2.1.3 Complement 2: Alternative PLSR models 

 

 

A common approach for enhancing estimating power of models are spectral selection. It is 

intending for using only absorption values at particular wavelengths which are related to the 

compound of interest and excluding those with unrelated information and noise. However, 

the identification if particular wavelengths contain pertinent information for a model requires 

exhaustive methodology that may be undertaken by off-line analytical or chemometric 

approaches. Off-line approaches are based on previous knowledge of a compound, as in the 

use of samples with different concentration values of the compound of interest, which would 

eventually reveal changes in spectra at particular wavelengths as function of concentration. 

Then such a spectral region is likely to contain information mainly about the compound of 

interest. Although this approach may be feasible in relatively simple matrices, it becomes 

more difficult in complex matrices such as cell culture media where there may be complex 

interactions with other compounds. Another way of solving this challenge is the use of 

chemometrics techniques such as the interval and iterative PLSR method or the use of 

spectral compression seeking noise reduction, such as the use of Fourier transformations.  

 

Interval and iterative PLSR (iPLSR) 

This method is intended for selecting only a subset of variables (absorptions at 

particular wavelengths) that would eventually provide superior prediction power 

compared to using all the spectral NIR range. It performs a sequential and exhausitive 

search for the best combination of variables, seeking to reduce noise or variables 

without pertinent information. There are two main approaches for performing the 

research, which are called forward iPLSR, where variable intervals are successively 

included in the analysis, and the reverse iPLSR, where intervals are successively 

removed from the analysis. Though both approaches can be used in single variable or 

a range of adjacent variables, the latter is preferred in spectroscopic data since there 

may be spectroscopically correlated variables.  

 

  



4. RESULTS & DISCUSSION 

4.2 CHAPTER II – Evaluation of classic calibration techniques to monitor cell cultures 

 

 

 

123 

 

Fourier transformations:  

In the 1990s, Fourier decomposition was particularly used for saving spectroscopic 

data in a compressed way since it is possible to represent NIR spectra with 99.999 % 

similitude with only 100 – 200 Fourier scores.   

Fourier scors analysis relies on the Fourier series decomposition that states that any 

continuous function may be represented in the form of sin and cosine waves at 

different frequencies. The Fourier series are good to represent curves with the same 

degree of smoothness and they are not efficient to represent curves that are smooth in 

places and spiky in others. If the number of sine and cosine waves increases, the 

approximation to the function will be close. The great majority of the information of 

the function will be present in the first low frequencies waves, and the high 

frequencies waves will account for small variability and noise. 

The use of Fourier scores (FS) for regression was intended for mimicking the nature 

of NIR absorption to some extent. Total absorption at a particular wavelength () is 

caused by the sum of individual absorptions of several absorbing compounds as 

shown in Equation 23.     

 

𝐴𝜆1 = 𝑙 (Ԑ1C1 + Ԑ2C2 + Ԑ..C.. + Ԑ𝑛C𝑛) 

 

Equation 23 

where Ԑ is the molar attenuation coefficient or absorptivity of the attenuating 

species, C the concentration of the attenuating species and 𝑙 the optical path 

length. 

 

This approach sought to assign particular frequencies to particular compounds at low 

frequencies and eliminate noise by discarding high frequencies.  
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The use of PLSR with chemometric techniques related to spectral selection were developed 

for enhancing predictive power of models. Two main strategies were followed:  

1) Use of interval and iterative PLSR:  

The iPLSR was used in forward mode, which first divided total spectral into 

frames (either 40 or 50 variables frames). It created individual PLS models 

(one for each frame) for the first iterative cycle. Cross-validation was then 

performed for each of these models and the interval which provided the lowest 

RMSECV was retained. For the second cycle, the already retained model in 

the first cycle was used in all models but was combined with each of the other 

remaining intervals, one at a time, when creating a new set of new PLSR 

models. The RMSECV was then used for selecting the best combination of 

intervals and the whole processes was repeated 30 times. This approach was 

used for building the models using up to eight latent variables. Then the best 

combination of variables and latent variables was selected for a particular 

compound.  

 

2) Spectral compression by Fourier transformations & iPLSR:  

First, spectra were compressed using Fourier transformation and 770 Fourier 

scores were retained. PLSR models were then generated using only 200 FS 

which can be used for representing spectra with more than 99.99 % similitude. 

Then forward iPLSR was used using only the first 200 low frequency FS.   

 

By using iPLSR some particular wavelengths and frequencies were identified as some 

particular compounds using either Fourier scores as inputs or spectra. However, no general 

enhancement was observed. Indeed, the use of iPLSR had detrimental effects for lactate, 

glutamine and glucose while no effect was observed for mAb or NG-mAb when evaluating 

models by either RMSCV or RMSEP. Only viable cells showed a slight enhancement (Table 

4.2-5).  
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Table 4.2-5. Statistical analysis of alternative PLSR models 

 
Viable 

cells 
Glucose Lactate Glutamine mAb 

NG-

mAb 
P

L
S

R
 

RMSECV 6.15 1.94 3.22 0.44 35 19 

RMSEP 8.34 2.51 4.38 0.50 53 18 

R2CV 0.95 0.95 0.78 0.85 0.84 0.39 

R2PRE 0.95 0.93 0.67 0.81 0.83 0.50 

LV 5 6 5 5 5 3 

iP
L

S
R

 

RMSECV 5.77 1.93 3.44 0.44 37 19 

RMSEP 7.18 3.01 11.46 0.68 50 18 

R2CV 0.95 0.95 0.85 0.85 0.85 0.38 

R2PRE 0.94 0.90 0.56 0.66 0.84 0.42 

LV 5 5 3 7 7 3 

iP
L

S
R

-

F
o
u
ri

er
 

RMSECV 5.40 1.96 3.66 0.46 38 18 

RMSEP 7.21 2.98 4.41 0.49 51 19 

R2CV 0.96 0.95 0.72 0.84 0.82 0.38 

R2PRE 0.93 0.91 0.66 0.85 0.83 0.37 

LV 11 5 9 7 11 7 
Units for RMSECV and RMSEP are the same: (cells.mL-1) x105 for viable cells, mg.L-1 for mAb and 

NG-mAb, and mM for glucose, lactate and glutamine.   

RMSECV: root mean square error of cross-validation; RMSEP: root mean square error of prediction; 

R2CV, R2PRE: correlation coefficients of cross-validation or prediction; LV: number of latent variables; 

NG-mAb: non-glycosylated mAb. 

Spectral frames: 121-160, 241-320, 361-400, 441-520, 841-920, 1041-1160, 1281-1320 (Viable cells) ;  

301-400, 451-500, 801-850, 1451-1500 (glucose) ; 441-495, 551-605, 771-825 (lactate) ; 401-440, 561-

600, 681-720, 801-840, 1081-1120 (Glutamine) ; 151-200, 351-400, 451-600, 801-850 (mAb) ; 151-200, 

351-400, 451-500, 1201-1250 (NG-mAb).  

Fourier scores frame: 7-11, 13-17, 21-2,; 35-37, 41-43 (viable cells); 1-4, 17-20, 25-40 (glucose); 13-

15, 28-30, 46-48, 61-66, 70-78 (lactate); 5-8, 17-24, 33-36 (glutamine); 1-6, 11-14, 20-30, 33-60, 65-

66, 69-74, 79-82, 89-90 (mAb); 3-14, 17-40, 63-64, 67-76, 79-80, 89-118 (NG-mAb) 

 

 

The iPLSR models using either spectra or FS as inputs, were then compared for viable cells 

monitoring as shown in Figure 4.2-4. Kinetic profiles performed by either iPLSR or FS-

iPLSR for viable cells revealed no enhancement for real-time monitoring issues. Both 

mispredicted viable cell concentration at the stationary phase as formerly discussed in the 

article for PLSR models. 

 



4. RESULTS & DISCUSSION 

4.2 CHAPTER II – Evaluation of classic calibration techniques to monitor cell cultures 

 

 

 

126 

 

 
Figure 4.2-4. Performance of PLSR alternative models during real-time monitoring 

 

 

 

Variable selection was intended for identifying wavelengths producing the smallest 

prediction error and thus better performance during real-time monitoring. Although many 

studies have shown the benefits of variable selection in PLSR models, this has not been the 

case in the present cell culture system. Lacking enhancement may have been due to 

remarkable interdependency of compound absorption or nonlinearity that cannot be properly 

managed by the classic PLSR method.   
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4.2.2 Conclusions of chapter II 
 

 

In this chapter, the adequacy of PLSR models for cell culture processes was investigated. 

First, the performance of PLSR was evaluated and it revealed that cell culture processes are 

extremely dynamic and that diverse phenomena limited PLSR for accurate estimation of 

compound concentration. These phenomena were globally identified as nonlinear 

relationships between spectra and especially concentration of mAb. Nonlinearity 

compromised the most important assumption for PLSR calibration modelling: the 

relationship between spectra and compound concentrations should be constant during the 

cell culture process to be able to use the same regression equation to perform concentration 

estimations. The failure of this essential assumption had caused concentration 

misestimations for several compounds, particularly at the beginning and end of cell cultures 

where nonlinearity mainly arose. Moreover, there were cases where nonlinearity was not 

based on cell culture progression but were inherent during the whole calibration space, such 

as for NG-mAb concentration.   

In contrast to PLSR which is a variable-based method, LWR is a sample-based method. In 

other words, PLSR generates calibration equations based on the relationships between 

variables (absorption at different wavelengths) and concentration, while LWR first 

accounts for similarity between calibration samples and uses only similar samples for 

calibration and a calibration equation is generated. Calibration under a local regression 

approach using LWR seemed appropriate for enhancing estimating power of models, 

particularly during real-time monitoring within different phases of batch cell culture. The 

key for this enhancement was the similarity analysis between calibration samples for 

creating the calibration model. Selection of similar samples for calibrating was closely 

related to cell culture progression. Using similar calibration samples enhanced scattering 

management by spectral pre-processing and also generated equations based on matrices 

with similar compound intercorrelations, leading to better generalization of information 

within spectra and thus enhanced estimating power by models.  

Results have proven that the use of LWR could enhance the power of NIR monitoring 

procedures based on spectra captured using in situ probes. However, this approach also 
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requires consideration of more factors; LWR would require more attention in the calibration 

process since local calibrations would require more samples in a homogenized distribution 

in the calibration space. Besides, attention to outliers becomes essential since regression is 

based on few local data and the effect of an outlier in the local regression space may have 

an enormous effect.  On the other hand, a perspective issue is also of concern when using 

calibration models based on sample-based regressions, since such concentration estimation 

is based more on empirical assumptions (sample similarity) than models based on variable-

based regressions (specificity).  

Overall, these results have shown the complex nature of cell culture processes and the need 

for more sophisticated calibration approaches for properly dealing with diverse phenomena 

depicted as nonlinear relationships between spectral and compound concentration. The 

undertaken local approach seemed appropriate for dealing with nonlinearity related to cell 

culture progression; however, there were other nonlinearity sources which could not be 

properly managed by the local regression approach, which likely required the novel use of 

nonlinear regression methods.   
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4.3 CHAPTER III: NOVEL IMPLEMENTATION OF NONLINEAR 

CALIBRATION APPROACHES 

4.3.1 Introduction 
 

 

In the former chapter, the vulnerability of PLSR models for monitoring of cell cultures was 

shown to be due to nonlinear relationships between spectra and concentration. Calibration 

based on local regressions using LWR, had shown enhanced performance, though there were 

still strong nonlinear relationships where even LWR failed. Therefore, in this chapter the 

novel use of nonlinear regression methods for generation of calibration models has been 

explored. Indeed, several studies have shown the potential of these regression methods in 

spectroscopic data. However, as far as can be ascertained its application for cell culture 

monitoring had yet not been addressed.  

In this chapter, Partial Least Squares Regression (PLSR), Supported Vector Regression 

(SVR) and Artificial Neural Network Regression (ANNR) were used for the generation of 

calibration models. The performance of models was evaluated through different perspectives 

with focus on their performance under real-time monitoring conditions. Calibration methods 

were firstly evaluated for accuracy, precision and linearity using calibration data. Secondly, 

their performance during real-time monitoring was addressed with focus on the effect of 

inter-batch heterogeneity, specificity to the compound of interest and robustness. This study 

was exploratory and interpretative in nature, seeking to understand the behavior of calibration 

models in cell culture processes. Then it could be used as a friendly frame for basic 

interpretation issues facilitating proper management of the NIRS procedure lifecycle. Results 

for this chapter are intended for publication in Biotechnology Journal and they are 

accordingly organized for this purpose.    
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4.3.1.1 Evaluation of NIR calibration models for in situ CHO cell culture monitoring: 

PLSR, ANNR & SVR 

 

 

Daniel A. Zavala-Ortiz1,2, Bruno Ebel1, Meng-Yao Li1, Dulce Ma. Barradas-Dermitz2, Maria 

G. Aguilar-Uscanga2, Patricia M. Hayward-Jones2, Annie Marc1, Emmanuel Guedon1 

 

1- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, 

LRGP, 2 avenue Forêt de Haye, TSA 40602, 54518 Vandœuvre-lès-Nancy, France. 

2- Instituto Tecnológico de Veracruz: Calz. M.A. de Quevedo 2779, Veracruz, Ver. 

Mexico. 

 

4.3.1.1.1 Abstract 

 

The biopharmaceutical industry has to assure the consistency and biosafety of biological 

medicines which are quite sensitive to cell culture variability. Therefore, advanced retro-

control strategies must be implemented in cell culture processes for proper control of 

biochemical process parameters, such as concentration of cells, substrates and by-products. 

Near Infrared spectroscopy coupled to multivariate analysis has been shown as a promising 

technique for monitoring cell culture processes. However, there are still some challenges for 

its successful establishment in industry. In this study the novel use of Neural Networks and 

Supported Vector regression nonlinear techniques has been explored for the generation of 

calibration models and compared with Partial Least Squares. Nonlinear approaches have 

been shown superior to PLSR during real-time monitoring by better management of inter-

batch heterogeneity and enhanced specificity to particular compounds. Overall, the use of 

SVR and ANNR for the generation of calibration models has enhanced the potential of NIR 

spectra as a monitoring tool.  

 

4.3.1.1.2 Introduction 

 

 

The production of biologicals remains a challenge due to the structural complexity of these 

molecules and their sensitivity to changes in the manufacturing process. That is why the 

Quality by Design initiative is being established for building quality through the production 

processes. Accordingly, continuous monitoring of Critical Process Parameters (CPP) 

affecting the properties of biopharmaceuticals is required to establish advanced retro-control 
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systems which assure the final clinical effect of medicines. Among the diverse CPP affecting 

cell culture performance, composition of culture media has a wide effect since it contains 

substrates for cell proliferation and product synthesis or toxic by-products spoiling the cell 

physiological state and thus process performance. Thus, monitoring their NIRS is a 

promising tool since it is capable of providing multicomponent information directly without 

sample treatments using in situ analysis modes (Cervera et al. 2009; Li et al. 2016). 

Nevertheless, NIR spectra and culture media dynamics are complex and multivariate 

calibration methods are required to extract and relate the observed spectra, in an estimation 

manner, to a desired variable property, such as nutrient and by-product concentration. The 

design of the multivariate calibration model is not a trivial matter and responds to various 

technical and regulatory factors. Technical factors mainly concern the nature of the 

calibration process, while regulatory factors rely on proper validation (accuracy, precision, 

specificity, linearity, range of operation and robustness) and management of the NIRS 

calibration procedure lifecycle.  

Concerning the technical factors, there are several challenges for successfully calculating 

compound concentration using NIRS calibration models: confused relationships between 

compounds, complicated relationships between spectra and compound concentration, inter-

batch heterogeneity, noisy spectra and process changes during normal operation. Indeed, a 

complicated relationship between spectra and concentration is the reason why multivariate 

methods are required. Moreover, for in situ approaches in chemically and physically complex 

matrix such as cell culture media, extreme care must be taken to generate in situ calibration 

models, especially in the regression method. 

Currently, Partial Least Squares regression (PLSR) is the most common regression method 

to perform calibration models for cell culture monitoring. PLSR maps spectral data linearly 

into low-dimensional space, and then low-dimensional coordinates are employed to generate 

the regression or calibration equations using only linear combinations (Höskuldsson 1988). 

Although PLSR is capable of addressing complicated linear relationships, it is incapable of 

properly addressing strong non-linear relationships. However, it may be modified to handle 

them by including non-linear regression coefficients in the calibration equation or by local 

modelling (Centner and Massart 1998). Several varieties of PLSR such as Poly-PLSR, 

Spline-PLSR, Linear-quadratic PLSR and others have been tested for NIR calibrations but 
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unfortunately such approaches have shown to be inferior in predictive capacity compared to 

Artificial Neural Network Regression (ANNR) and Supported Vector Regression (SVR) in 

spectroscopic data (Blanco et al. 1999; Balabin et al. 2007; Balabin and Lomakina 2011). 

Nevertheless, PLSR and other linear approaches have been proven proper methods in major 

cases and are broadly considered in guidelines for NIRS analytical procedures of regulatory 

agencies for cell culture monitoring. This can be explained by the fact that those semi-

parametric methods also provide a friendly frame for interpretation issues that facilitate 

proper management of the NIRS procedure lifecycle.  

Non-linear regression approaches have several advantages, though still require some 

advanced computer power when dealing with large amounts of data. A major advantage is 

their flexibility to model complex relationships, although model interpretation may become 

cumbersome due to the stochastic and generally non-parametric nature of such regressions, 

so that management of the NIR procedure may become difficult. This is exemplified for 

ANNRs, whose final structure may depend on initial training parameters and the fact that 

extremely different net architectures may achieve comparable results (Hagan et al. 2004). In 

addition, common tasks in parametric regression methods such as variable selection or input 

pre-treatments require exacerbated efforts and consequently selecting model inputs and their 

nature are often delegated to the regression process itself (Suzuki 2011).  

Recently, non-linear and non-parametric regression approaches based on SVR and ANNR 

have gained popularity in developing NIR calibration models (Meyer and Weigelt 1992; 

Cogdill and Dardenne 2004; Brudzewski et al. 2006; Ferrão et al. 2007; Balabin et al. 2007; 

Wu et al. 2008; Liu et al. 2008; Balabin and Lomakina 2011), but as far as can be ascertained 

such regression methods have not been addressed in building calibration models for cell 

culture monitoring. To date, there has been no reliable evidence that provides a reference 

frame to evaluate the convenience of regression methods, either linear or nonlinear, for 

building calibration models of culture medium compounds during cell cultures. Therefore, 

the aim of this study is to provide an extensive empirical frame to evaluate the convenience 

of different regression methods (PLSR, ANNR and SVR) for monitoring CPP in CHO cell 

culture processes.   
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4.3.1.1.3 Materials and methods 

 

 

Cell culture for data acquisition  

 

Cell cultures of CHO cells were performed in 2 L bench-top bioreactors (Pierre Guérin, 

France) with a 1.5 L working volume. Six bioreactor cultures were performed for the 

calibration set, obtaining off-line measurements and for covering bioprocess variability: three 

batch cultures, two feed-harvest cultures with medium renewal and one batch culture with 

glucose spiking. A batch culture was also performed as an external validation culture, using 

ActiPro (HyClone) as the culture medium. The culture medium for all other cultures was a 

protein-free medium mixture consisting of a 1:1 volume ratio of PF-CHO (HyClone) and 

CD-CHO (Fisher Scientific) supplemented with 4 mM L-glutamine (Sigma Aldrich) and 0.1 

% pluronic F-68 (Sigma Aldrich). The genetically modified DG44 CHO (CHO M250-9) cell 

line was used, kindly provided by the Bioprocessing Technology Institute (Singapore). 

Dissolved oxygen (DO) was controlled at 50 % air saturation; agitation rate was fixed at 90 

rpm throughout the culture. Temperature was maintained at 37 °C and pH was set and 

controlled at 7.2 using 0.5 M sodium hydroxide and CO2. In situ spectral scanning of 

bioprocess culture media was carried out with a NIR transflectance probe with a 1 mm 

pathlength (Precision Sensing Devices, MA). The sterilisable probe was connected to an 

Antaris II spectrometer (Thermo Scientific, USA). Each NIR spectrum corresponded to an 

average of 128 scans with an 8 cm-1 resolution from 4,000 to 10,000 cm-1 (2,500 – 1000 nm). 

Off-line concentrations of glucose, lactate, glutamine and mAb were determined using 

enzymatic kits (Roche 06681743001, 07395655001 for mAb and glutamine respectively; 

Thermo Scientific 981780, 984308 for glucose and lactate respectively) with an automatic 

spectrophotometer (Thermo Scientific GALLERY) against external standards. Viable cell 

density (VCD) was calculated by the trypan blue dye exclusion technique using an automatic 

cell counter (Beckman Coulter, Vi-CELL). 

 

 

Development of calibration models (PLSR, SVR & ANNR) 

 

A main set of calibration, consisting of 168 spectra, was acquired from bioreactor cultures, 

and divided into a calibration set (135 samples) and an internal validation set (33 samples). 
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The main calibration set, used for model development, was partitioned using the Kennard-

Stone algorithm. The internal validation set was mainly used to analyse generalization of 

ANNR models by performing an analogous process of cross-validation. Calibration models 

for VCD, glucose, lactate, and glutamine were generated and spectral pre-processing for 

PLSR models was as simple as possible seeking conservation of maximum information 

contained. The main strategy was to normalise (MSC, PQN, SNV) and/or filter (derivative, 

EMSC) spectra and once a promising combination of spectra pre-processing was determined, 

only slight tuning was performed based on model performance so that predictive power of 

the models was enhanced. Predictive power was evaluated by the Root Mean Square Error 

of Cross-Validation (RMSECV). Determination of latent variable (LV) number for PLSR 

models was based on the goodness of estimation (Q2Y): the minimum number of LVs was 

obtained when Q2Y ceased to improve, using a venetian-windows cross-validation approach. 

The particular spectral pre-processing technique used for each compound with PLSR models 

was also used for all other regression methods for comparison of models to be mainly based 

on regression methods.  

For the SVR models, the kernel was based on Radial Basis Function and optimization for 

gamma and epsilon values was also performed using a venetian-windows cross-validation 

approach. In the case of ANNR, the network size was firstly evaluated without cross-

validation (100 iterations) for inferring the minimum number of neurons to be used in 

regressions, then the nature of the network structure was assessed. Early-stopping (maximum 

20 training iterations using backpropagation with tanh as an activation function at 0.125 learn 

rate) was used to avoid overfitting and the internal validation set of 33 samples was used to 

validate the generalization power of the nets as a cross-validation procedure. The selection 

of the particular structures of ANNR and SVR models were those with the lowest RMSECV. 

The best model of each regression method (PLSR, ANNR and SVR) for each compound was 

retained for further evaluation. 

Multivariate calibration models and statistical analysis were performed in MATLAB® 

(Statistics and Machine Learning Toolbox™, MATLAB R2016a, The MathWorks, Inc., 

Natick, Massachusetts, United States). Chemometrics software was also used 

(PLS_Toolbox® 8.2.1, Eigenvector Research, Inc., Manson, WA, United States). 
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Comparison of model performances 

 

Comparison of models was based on requirements proposed by regulatory agencies for 

validation of NIR quantitative analytical procedures, such as accuracy, precision, linearity, 

specificity, range of operation and robustness. Because of such different structures of PLSR, 

ANNR and SVR models, a comparison was addressed in qualitative and quantitative 

approaches.  Quantitative comparison of models comprised direct comparison of accuracy, 

precision and linearity. Qualitative approaches were undertaken to analyse the specificity of 

models and particularly for evaluating the performance of models under similar conditions 

expected during real-time monitoring. Discussion of some aspects of models, such as range 

of operation and robustness, is undertaken for the two types of comparison, particularly 

during qualitative analysis. In accordance to Anscombe (1973) quantitative analysis was 

focused on numerical calculations and qualitative analysis on graphical analysis of model 

performances. Finally, models were evaluated using a batch culture with different culture 

media (ActiPro (HyClone)) which was completely independent from the calibration process.   

For quantitative comparison, accuracy was measured as the RMSECV and statistically 

compared (One-way ANOVA with a post-hoc Tukey test) in terms of the absolute differences 

between the predicted and the real concentration values. Precision was measured as the mean 

of residuals (MoR) during calibration and statistically analysed in terms of homogeneity of 

variance of the residuals using multi-way Levene's test. Linearity was measured as the 

correlation coefficient (R2) of the calibration plot and statistically evaluated in terms of 

correlation of the residuals from the calibration plot using the Durbin-Watson test.  
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Table 4.3-1. Methodological approach for comparison of models 

Quantitative comparison Qualitative comparison 

- Accuracy:  

Measured as the RMSECV 

and statistically analysed by 

One-way ANOVA with a post-

hoc Tukey test 

- Precision: 

Measured as the mean of 

residuals and statistically 

analysed by the variance of 

residuals using multi-way 

Levene’s test 

- Linearity 

- Measured as R2 and 

statistically analysed by the 

correlation of resdiuals using 

Durbin-Watson test 

- Specificity of models:  

Detection of abnormal glucose spiking in 

calibration samples 

- Inter-batch heterogeneity effect: 

Comparison of the performance during 

real-time monitoring of three batch cultures 

for glucose 

- Performance under normal conditions: 

Analysis of model performances using a 

batch with mean inter-batch heterogeneity 

- Robustness: 

Analysis of model performances for real-

time monitoring using a batch culture with 

a different culture media (HyClone 

ActiPro).  

 

The three batch cultures were used for analysing the effect of inter-batch heterogeneity on 

predictive power of models. The batch culture with glucose spiking was used to evaluate the 

specificity of models to identify and relate glucose NIR signal within other NIR confused 

signals. The batch with mean inter-batch heterogeneity was used as internal validation, 

considered under usual operational conditions. Finally, an independent-of-calibration batch 

culture with a different culture media (ActiPro) was used to perform external validation and 

to discuss some aspects of model robustness. The general approach for analysing the model 

performance is summarised in Table 4.3-1. 
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4.3.1.1.4 Results and discussion 

 

 

Spectra analysis 

 

Analysis of spectra revealed noisy response caused by optic fibre noise (Clavaud et al. 2013) 

for the 2500 nm to 2550 nm range, which corresponded to the first NIR spectral variables 

and thus, this spectral section was not used for regressions. The presence of additive, 

multiplicative and wavelength-dependent effects due to scattering was evaluated within the 

calibration set spectra. The most common techniques to eliminate undesired spectra 

variations caused by light scattering (MSC, PQN, SNV, EMSC, derivatives) were evaluated. 

The standard deviation per each wavelength was used to elucidate the effect of scattering on 

calibration spectra. Raw spectra contained great variation within all the wavelength range, 

likely linked to multiplicative effect (offset of spectra). Analysis also revealed some 

scattering effects such as additive effect (baseline shift), and a likely wavelength-dependent 

effect (Rinnan et al. 2009). All spectra pre-processing techniques reduced the standard 

deviation caused by scattering and some of its effects. However only Extended Multiplicative 

Signal Correction (EMSC) (Martens et al. 2003) was capable of limiting the wavelength-

dependent effect, though limiting the variance between spectra, which may compromise 

predictive model performance. Models based on PLSR are particularly sensitive to 

multiplicative effects (Martens et al. 2003) and proper spectra pre-treatment is essential for 

developing accurate calibration models. Final spectral pre-processing is shown in Table 4.3-

2.  

 

Table 4.3-2. Spectral pre-processing of models 

Compounds Spectral pre-processing 

Viable cells MSC + 1st derivative (15, 2,1) 

Glutamine EMSC 

Glucose MSC 

Lactate EMSC + 1st derivative (15, 2, 1) 

mAb EMSC 

MSC: Multiple Scatter Correction; SNV: Standard Normal Variate; Abs: Absolute value; 

OSC: Orthogonal Scatter Correction; Values for derivatives: filter width, polynomial 

order, derivative order 
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Decomposition of spectra by PCA allowed the analysis of data using only few spectral 

variables in terms of principal components. The first principal component (PC) explained 77 

% of the spectral variance, and the second PC 9 %. This analysis revealed the evolution of 

the culture process in the PC space, also called process trajectory (Henriques et al. 2009; 

Clavaud et al. 2013) as shown in Figure 4.3-1. 

 

Figure 4.3-1. Calibration spectra set analysis 

 

The main direction of the process was explained by PC1, which showed that as the cultures 

developed, spectra in the PC space go from right to left as shown by the dark arrow in Figure 

4.3-1. Inter-batch variability is mainly represented by PC2 in the way that batch trajectories 

remained similar with only different offsets in the PC2 axis (grey arrow in Figure 4.3-1). 

PCA was also used to infer the nature of the relationship between spectra in the PC space and 

concentration as shown in Figure 4.3-2. Strong non-linear relationships were observed for 

ammonium ions and glutamine for all the concentration frame with hyperbolic and 

exponential profiles respectively.  
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There were compounds with a major linear relationship for a large concentration frame such 

as viable cells and glucose, but also for mAb and lactate to a lesser extent. For these 

compounds, nonlinearity was observed at relatively low and high concentrations, 

corresponding to the end of cell culture processes. For instance, when viable cell 

concentration surpassed 60x105 cells.mL-1, there was no clear linear relationship between 

spectra (in terms of PC 1) and concentration. This phenomena was even more marked for 

lactate and mAb, where an obvious linear relationship is completely lost when concentration 

surpassed 10 mM and 200 mg.L-1, respectively.   

The case of glucose and glutamine is perhaps the mostthought-provoking, where a linear 

response is observed at the same time as no response. In glucose profiles, there are three main 

obviously linear profiles, separated likely due to inter-batch heterogeneity. Even at low 

concentrations such a linear relationship is preserved. However, once concentration goes 

above 10 mM, there are samples corresponding null concentration (0 mM) with PC values 

above to 0, such PC values also including samples for concentration values up to 20 mM. 

Similar phenomena were observed for the mAb and glutamine relationship between spectra 

and concentration.  
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Figure 4.3-2. Main relationship between spectra and concentration 
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The parabolic and exponential profile relationship for ammonium and glutamine, 

respectively, may be a strong challenge for PLSR modelling. The nonlinear frames for all 

other compounds also represent a major challenge for linear calibration models. Therefore, 

calibration based on nonlinear regression techniques are likely required for properly 

management of calibration spectra within the whole concentration frames. Although it is 

common to make general assumptions of non-linearity based on the physical properties of 

the analysed matrix, data suggested that there may be inherent nonlinear relationships 

between spectra and some compounds concentrations, which may be independent of the 

physical properties of the matrix. This is evident since nonlinear relationships are different 

depending on the compound analysed. Therefore, treatment of all variables under the same 

approach seemed inappropriate to generate accurate calibration models. Consequently, two 

main regression techniques were used for addressing nonlinearity, SVR which is a sample-

based method and ANNR which is a variable-based method. The main focus was on classic 

compounds (glucose, viable cells, glutamine and lactate) since mAb monitoring has been 

analysed separately in 4.4 Chapter IV (4.4.1.1).  

 

Quantitative comparison 

 

Direct comparison of model performances is summarized in Table 4.3-1. Accuracy, precision 

and linearity were measured through different perspectives. Accuracy, as the RMSECV is 

intended to depict the distance between actual and predicted concentration. For all 

compounds, nonlinear models achieved lower RMSECV than those by PLSR models, which 

suggested the limited performance of PLSR for cell culture monitoring. However, statistical 

analysis by one-way ANOVA with Tukey test revealed no significant difference. Two group 

means are significantly different if their intervals are disjoint and intervals overlapped for all 

variables using the three different regression models. This fact explained why even promising 

results using nonlinear models, are statistically equal to PLSR performance.  
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Table 4.3-3. Statistical analysis of PLSR, SVR and PLSR models 

 

 

Accuracy  

(RMSECV) 

Precision 

(MoR) 

Linearity 

(R2) 

Model structure 

Glucose PLSR: 3.377A 

SVR: 2.29A 

ANNR: 1.321A  

PLSR: 2.08C 

SVR: 0.002A 

ANNR: 0.012B 

PLSR: 0.85NL 

SVR: 0.93L 

ANNR: 0.98L 

PLSR: 5 LV  

SVR: 135 SV  

ANNR: 4 N 

Lactate  PLSR: 3.5419A 

SVR: 2.93A 

ANNR: 3.23A 

PLSR: 1.462C 

SVR: 0.622A 

ANNR: 1.005B 

PLSR: 0.75 NL 

SVR: 0.83 L 

ANNR: 0.78 NL 

PLSR: 5 LV  

SVR: 97 SV  

ANNR: 4 N 

Glutamine PLSR: 0.670A 

SVR: 0.426A 

ANNR: 0.43A 

PLSR: 0.270B 

SVR: 0.16A 

ANNR: 0.228B 

PLSR: 0.68 NL 

SVR: 0.87 L 

ANNR:0.87 NL 

PLSR : 6 LV  

SVR : 131 SV 

ANNR : 5 N  

Ammonium PLSR: 0.8236B 

SVR: 0.535A 

ANNR:0.536A 

PLSR: 0.156C 

SVR: 0.033A 

ANNR: 0.18B 

PLSR: 0.45 NL 

SVR: 0.78 L 

ANNR:0.70 L 

PLSR : 4 LV  

SVR : 135 SV 

ANNR : 4 N 

Viable cells PLSR: 6.88A 

SVR: 7.18A 

ANNR:5.29A 

PLSR: 3.287C 

SVR: 0.253A 

ANNR: 0.549B 

PLSR: 0.93 NL 

SVR: 0.92 L 

ANNR: 0.97 L 

PLSR : 5 LV  

SVR : 128 SV 

ANNR : 2 N 

Different letters as exponents indicate statistically significant differences between groups 

for accuracy and precision. Exponents for linearity indicate if models predict concentration 

linearly to actual concentration (L) or a non-linear deviation during prediction is detected 

(NL). Accuracy was measured as the RMSECV and statistically compared (One-way 

ANOVA with Tukey test) in terms of the differences between the predicted concentrations 

and the actual concentrations. Precision was measured as the mean of residuals (MoR) and 

statistically analysed in terms of homogeneity of variance of the predicted residuals using 

multi-way Levene’s test. Linearity was measured as the correlation coefficient (R2) of the 

calibration plot and statistically evaluated in terms of correlation of the residuals using the 

Durbin-Watson test. 

LV: Latent variable, SV: Support vector for SVR models, N: Neurons for ANNR models; 

Units for RMSECV, RMSEP and SEP are the same: (cells.mL-1) x105 for viable cells, and 

mM for glucose, lactate, glutamine and ammonium.  

 

 

In contrast to accuracy, which describes the distance between actual and predicted values, 

precision describes the variation on predicted values when the same (or extremely similar) 

sample is measured by the same model. The nature of calibrating using samples from 

heterogeneous cell culture processes is a great constrained to acquire data for precision 

analysis. Accuracy and precision are often analyzed using the same data (differences between 

actual and estimated values) rather than acquiring particular data for proper precision analysis 

(repeated measurements). Therefore, accuracy and precision are confused and then precision 
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has not received focused attention in cell culture monitoring studies. Then, it was proposed 

to analyzed precision by homoscedasticity analysis using the variance of the residuals.  

The residuals for a particular compound were calculated using a particular calibration model 

based on either PLSR, SRV or ANNR. Then their distribution was computed and analyzed. 

If the variance of the residuals has the same distribution, then it is likely that PLSR, SVR and 

ANNR models have the same precision. Contrary, if models differ on distribution, it is clear 

that those with narrow distributions are likely more precise. The differences between those 

distributions were statistically analyzed by Leven’s test. These analyses revealed that SVR 

and ANNR are likely more precise than PLSR as shown in Table 4.3-3. Moreover, SVR is 

slightly more precise than ANNR. This could be explained by the fact that SVR is a sample-

based regression method, which could have also managed information of the cell culture 

progression and thus performed better than models based on ANNR.  

Although R2 is a parameter that shows how much variability is explained by the model, it is 

usually used as linearity term using the calibration plot data. Relative higher R2 coefficients 

were achieved when both ANNR and SVR were used for generation of calibration models in 

contrast to PLSR. However, higher R2 values do not guarantee that models predict 

concentration linearly to actual concentration. Analysis of correlation of the residuals 

revealed that there was correlation of the residuals for all compounds when using calibration 

models based on PLSR.  

The use of SVR and ANNR for generation of calibration models improved the performance. 

In general, those nonlinear regression methods leaded models to linearly predict 

concentration based on actual concentration. However, this was not the case for particular 

compounds such as glutamine and lactate when ANNR was used. In general terms, SVR 

seemed not only as the more accurate and precise regression method for building calibration 

methods but was also capable to predict concentration linearly to actual concentration using 

spectra.  

 

Qualitative comparison 

 

After quantitative analysis, the models were evaluated qualitatively for analysing their 

performance during real-time monitoring. First, the effect of inter-batch heterogeneity on 
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glucose calibration model generated with PLSR was evaluated using three different batches. 

Then, the specificity of models was analysed using the batch with glucose spiking. For 

analysing the performance of models during routine monitoring, special attention was 

focused on batch with mean inter-batch heterogeneity since it is likely to depict the majority 

of cultures. Finally, a fed-batch culture totally independent from calibration, was monitored 

and analysed for discussing some robustness issues.  

 

 

Figure 4.3-3. Effect of inter-batch heterogeneity on PLSR glucose model: A, performance 

of PLSR model for real-time monitoring of glucose concentration, B, inter-batch 

heterogeneity analysed by PCA 

 

 

The three batches shown different glucose predicted profiles as shown in Figure 4.3-3-A. For 

instance, batch 3 has a marked offset during the whole culture while batch 1 and 2 had some 

frames with accurate predictions and some other frames with miss predictions, particularly 

at the beginning and at the end of the culture. The effect of inter-batch heterogeneity on 

prediction performance was then analyzed using PCA Figure 4.3-3-B. Though calibration set 
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is composed of several cell cultures with particular trajectories, a global trajectory may be 

obtained when considering all cultures within the calibration set, which is depicted in the 

dark arrow of Figure 4.3-3-B. It is worth to note that when a particular batch trajectory agreed 

with global trajectory, there are accurate predictions (Figure 4.3-3-A) as those for batch 1 

and 2 in the frame within the blue and red arrows respectively (Figure 4.3-3-B), even if there 

are a strong offset from global trajectory. Contrary, there are mis predictions when the 

trajectory of a particular batch does not agree with the global trajectory. This phenomenon 

can be explained by the fact that a trajectory is a relationship between PC1 and PC2, which 

is then used for performing regression. If such relationship between PC1 and PC is not 

conserved, there will be mis predictions as those for Batch 3 (Figure 4.3-3-A). 

  

 

Figure 4.3-4. Effect of inter-batch heterogeneity on SVR and ANNR models:  Real-time 

monitoring of glucose concentration by SVR (A) and ANNR (B) models 
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Preparation of the three batches was focused on repeatability and no special change on neither 

inoculation nor culture media was intended. Therefore, results have shown that PLSR is 

particularly vulnerable to inter-batch heterogeneity. Therefore, the new implementation of 

nonlinear regression methods was evaluated for the generation of calibration methods. The 

on-line profiles for SVR and ANNR were closer to off-line concentration data (Figure 4.3-4) 

than those for PLSR (Figure 4.3-3). Major improvements were observed for Batch 1 and 2 at 

the beginning of cultures, where glucose concentration was properly predicted. Inter-batch 

heterogeneity, which strongly affected Batch 3 using PLSR (Figure 4.3-3), was more 

efficiently managed by calibration models based on either SVR or ANNR. For instance, 

while the on-line concentration profile by PLSR was completely offset for all the culture, 

profiles by ANNR and SVR models were properly fitted to off-line profiles during the first 

90 h of culture process. However, the effect of inter-batch heterogeneity still affected 

prediction power during the last part of the culture.  

Prediction power by models are affected by inter-batch heterogeneity since models are not 

totally theorical but rather partially empirical. This means that prediction is based in confused 

and global changes in cell culture media rather than particular changes on glucose vibrational 

NIR movements. Inter-batch heterogeneity or variability can then be understood as changes 

in the composition of the cell culture processes that do not match with the variability pattern 

constructed by the calibration method. Enhancement of prediction power in inter-batch 

heterogeneity conditions would necessary require that models be highly specific for the 

compound of interest. The more specific the model is to the analyte of interest, the less the 

model will depend on the pattern of confused relationships in the cell culture media. 

Therefore, the specificity of models was evaluated using the batch with glucose spiking.  
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Figure 4.3-5. Specificity of PLSR, SVR and ANNR models for real-time monitoring of 

glucose concentration 

 

The specificity of models was evaluated using the batch culture with glucose spiking. This 

batch was operated as other batches, but glucose was added at 173 h which completely 

interfered with the normal nature of batches and thus, the normal confused pattern of cell 

culture media used by calibration models to predict concentration. If a model is highly 

specific for glucose, then it would perform prediction more likely based on glucose signals 

rather than on confused pattern of cell culture media.  

The performance of models for the batch with glucose spiking is shown in Figure 4.3-5. For 

the frame operated as normal batch (0 h – 172 h), the three models performed relatively good. 

However, once the glucose was spiked into the bioreactor the performance of models greatly 

differed. Addition of the concentrated glucose solution into the bioreactor caused an increase 

on concentration up to 20 mM, only the model based on SVR properly predicted such 

concentration, while both models based either on ANNR or PLSR showed a limited increase 

on glucose concentration of 16 and 7 mM respectively. Although the three models showed 
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later a decreasing profile which matched in nature off-line concentration profile, only SVR 

was close to actual values while predictions by PLSR and ANNR sub-estimated 

concentration. In addition, both PLSR and ANNR predicted an increase of glucose 

concentration after the 200 h, which is totally contradictory to actual decreasing tendency. 

For explaining this behavior, PCA was used.  

 

 

Figure 4.3-6. PCA of the batch with glucose spiking 

 

The fact that model based on PLSR predicted increase of glucose concentration rather than 

the actual decrease, can be explained by the fact that addition of glucose strongly changed 

the trajectory of the culture process as shown by the red arrow in Figure 4.3-6. PCA had 

previously shown (Figure 4.3-1) that the progression of the culture was mainly explained by 

PC1 in a right to left direction, which agree with the decrease on glucose concentration. In 
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this context, while the trajectory of the batch is in agreement with global trajectory (blue 

circles in Figure 4.3-6), the model rightly predicted glucose concentration. Glucose spiking 

changed the trajectory of the culture, though the direction had no left tendency as expected. 

It changed into a right direction, as if the progression of the culture went backward up to 

states similar to those of the beginning of cultures where high concentrations of glucose are 

expected. This revealed the lack of specificity of the PLSR model, which performed 

prediction using mainly global changes of culture media. The lack of specificity for the model 

based on ANNR may be caused by the fact that calibration samples of this particular 

condition (glucose spiked culture) comprised only a negligible fraction from the calibration 

sample set. Thus, generalization of glucose information was mainly based on the majority of 

samples. Prediction of glucose concentration by SVR was likely enhanced by the fact that it 

is a sample-based regression method, which first detected abnormality in those few 

calibration samples with glucose spiked nature, separated them in the feature space and then 

relate them to concentration using a nonlinear relationship. This nature of SVR is likely 

advantageous as it could properly depicted the off-line concentration profile. However, 

bounce was important and thus accuracy and precision were limited, which could eventually 

compromise further control strategies.    

The models were used for real-time monitoring using the batch culture with mean inter-batch 

heterogeneity. Comparison for viable cells, glutamine, lactate and ammonium concentration 

is shown in Figure 4.3-7. For viable cells, ANNR and PLSR did not predict concentration 

properly since a both models sub-estimated cells concentration at the stationary phase, only 

the model based on SVR properly predicted viable cell concentration. On the other hand, 

both ANNR and SVR accurately predicted glutamine concentration while the model based 

on PLSR mis estimated concentration at the beginning and end of cultures, likely due to 

extrapolation phenomena as discussed in chapter 4.2.  

The lactate profile by the three methods were likely the same though PLSR and ANNR 

showed more bounce, during the last part of the culture the three models failed in accurately 

predict lactate concentration. Cell viability during this part of the culture was low and diverse 

intracellular compounds as well as cell debris were in the culture media, which could have 

limited generalization of models. This statement is in agreement to results from chapter II, 

where also LWR had limited predicted power in such conditions. In this context, LWR was 
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likely a better option even over SVR since LWR fitted data with mean errors of stochastic 

data rather than finding data using a nonlinear model such as SVR, which then predicted 

stochastically with new unseen data.  

For monitoring ammonium ions concentration, the model based on PLSR completely failed 

at the beginning of the culture, while models based on SVR and ANNR accurately predicted 

concentration in this initial frame. Between 45 h and 60 h of culture, there was an abrupted 

concentration increase that was not properly predicted by any model. Only SVR predicted 

some actual concentration properly though the majority of prediction sub-estimated actual 

concentrations. Prediction by the three models was enhanced after the 90 h of culture, where 

bounce was more evident for PLSR models and limited for ANNR and particularly for SVR.  
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Figure 4.3-7. Comparison of PLSR, SVR and ANNR model performances for real-time 

monitoring of diverse compounds concentration 
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As calibration models are partially empirical, evaluation of robustness could then also be 

considered empirical and interpretative in manner. The performance of models based on 

PLSR, SVR and ANNR for glucose monitoring in a Batch culture with ActiPro culture media 

is shown in Figure 4.3-8. The batch culture first consisted in a batch culture and then glucose 

was spiked at 120 h. The three models predicted this binomial nature though with different 

closeness to off-line profile. The model based on ANNR had the best performance since it 

accurately predicted glucose during the first part of the culture (0 h – 60 h) and accurate 

trends were observed until glucose depletion, then it detected the increase on concentration 

though not accurately. The model based on PLSR had a similar performance though with a 

larger offset, sub-estimating actual concentration. After glucose spiking, the PLSR did not 

predict the abrupted increase on glucose concentration and instead, it predicted a decrease on 

concentration. On the other hand, SVR had likely the worst performance during the first part 

of the culture with a large offset from actual concentration profile. However, during the last 

part when glucose was spiked into the culture, it predicted a concentration increase as the 

model based on ANNR.  

 

Figure 4.3-8. Robustness of PLSR, SVR and ANNR models to monitor under different 

culture media condition 
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4.3.1.1.5 Conclusion 

 

Former analysis of model performances suggested that PLSR was vulnerable due to lack of 

specificity and una inability to handle inter-batch heterogeneity. However, analysis of the 

batch culture with ActiPro culture media revealed the PLSR model as more accurate than 

SVR. This could be explained by the fact that PLSR was more likely based on information 

about cell culture progression rather than specificity. As the direction of the culture 

progression using ActiPro also matched that from calibration, PLSR could predict the profile 

though with a strong offset. Once glucose was spiked, spectra rested outside the calibration 

space and PLSR was not able to properly perform prediction in extrapolation conditions, 

which explained why it predicted decrease on concentration when it actually increased. On 

the other hand, SVR had been shown to have more specific to glucose and it was less 

vulnerable to inter-batch heterogeneity. However, it is likely that such high specificity for 

glucose in the normal culture media was based on information of glucose couple to some 

particular compound(s) that was not as abundant in the ActiPro culture media as in the normal 

culture media. The model based on ANNR was likely to generalized specificity for glucose 

better in contrast to SVR, which only generalized using some samples rather than from all 

calibration samples since SVR is a sample-based regression method. Thus, for robustness 

issues ANNR is likely the best option if such great variations on culture media are intended 

during cell culture processes.  
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4.3.2 Conclusions of chapter III 
 

 

In this chapter it has been shown that the nature of nonlinear relationship between spectra 

and concentrations is particular for each compound of interest. This fact revealed the need 

of different strategies for better management of nonlinearity according to particular 

compounds. Therefore, SVR and ANNR, two nonlinear regression methods for the 

generation of calibration models, were evaluated for fitting such nonlinearities. Then, the 

performance of nonlinear calibration models was compared against models generated using 

PLS as regression method.  

Results from calibration data showed that accuracy between the three regression methods 

are statistically the same. However, the nonlinear regression methods demonstrated 

significance enhanced capacity for building calibration models for cell culture monitoring, 

particularly by improved accuracy and precision. During real-time monitoring analysis, the 

models based on PLSR showed limited performance, particularly for management of inter-

batch heterogeneity and lack of specificity. These facts suggest that such linear models 

would likely fail in processes under the conventional QbD approach, where changes in the 

production processes and inter-batch heterogeneity is highly expected.  

The novel use of SVR and ANNR showed to be a promising alternative to maximize the 

potential of NIR spectroscopy as monitoring tool. Both regression models over performed 

PLSR in normal operating conditions. SVR is likely the best option since it better managed 

inter-batch heterogeneity (more accurate and precise predictions) due to their more 

specificity capacity. This enhanced performance could be explained by the fact that SVR is 

a nonlinear sample-based regression method. However, this nature could also be 

counterproductive in particular cases as for example changes in the culture media or process 

operation under abnormal operating conditions, where ANNR is likely the most robust 

method since it globally generalized the process dynamics. Overall, these results provided a 

wide frame to follow up new chemometric strategies which enhanced the capacity of in situ 

analyzers for the establishment of controlled cell cultures processes. 
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4.4 CHAPTER IV: INTO PAT CHALLENGES THROUGH NIRS 

4.4.1 Introduction 
 

During the last decades, regulatory agencies have encouraged biopharmaceutical industry for 

adopting Quality by Design and Process Analytical Technology for monitoring and control 

of Critical Process Parameters of the processes affecting Critical Quality Attributes of the 

products bioproduction processes. Ideally, monitoring tools should provide as much of 

process status information as possible in real-time manner. Then advanced retro control 

strategies based on process knowledge, may be launched as for controlling process variability 

and thus ensuring medicine quality. Although some basic CPP are systematically monitored 

(pH, temperature, among others), cell culture processes also require monitoring of CPP and 

CQA with biochemical and biological nature. Consequently, monitoring tools must be 

updated considering the needs of cell cultures processes. Process analyzers based on NIR 

spectroscopy have been proven promising monitoring tools when couple to in situ probes as 

they can provide multicomponent information in real-time manner. However, most of the 

work has been focused to some few biochemical compounds such as glucose, lactate and 

glutamine concentration, while monitoring of innovative parameters such as mAb 

glycosylation, or more functional parameter such as the cell physiological state, have 

remained practically unaddressed. Therefore, this chapter has explored the feasibility of in 

situ NIR calibration models for monitoring some of such innovative parameters.  

This chapter proposed the development of calibration models for monitoring common 

heterogeneity within animal and plant cell suspension cultures. In CHO cell cultures, 

calibration models were generated for monitoring mAb variants which differently impact 

clinical effects. The monitoring strategy was based on monitoring total mAb, non-

glycosylated mAb (mAb macro-heterogeneity) as well as the presence of particular sugar 

moieties within the glycan chain (mAb micro-heterogeneity). On the other hand, 

heterogeneity was addressed in terms of cell differentiation in plant suspension cultures of 

Catharanthus roseus, which is likely linked to the synthesis of anticancer molecules as 

demonstrated in 4.1 Chapter I (4.1.1.1.1). Results for this chapter IV have been published in 

Biochemical Engineering Journal and Bioprocess and Biosystems Engineering Journal for 

CHO cells and Catharanthus roseus cultures, respectively. Thus, the chapter is composed of 

both publications.  
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Partial Least Squares regression 
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2- Instituto Tecnológico de Veracruz: Calz. M.A. de Quevedo 2779, Veracruz, Ver. 

Mexico. 

 

4.4.1.1.1 Abstract 

 

Since monoclonal antibodies (mAb) are sensitive to the manufacturing process, several mAb 

variants can be the result of a single batch production. The most critical source of 

heterogeneity is glycosylation which has a profound impact on safety and efficacy of the final 

product. Implementation of monitoring and control of the process using the Quality by 

Design (QbD) approach may help to ensure mAb specifications, although its implementation 

is limited by the availability of real-time specific measurements. All current approaches to 

elucidate mAb glycoforms require sampling and labour-intensive efforts. Thus, glycosylation 

analysis is often performed with the objective of detecting quality defects at the end of the 

culture process. In this work, the capability of Near Infrared spectroscopy and chemometric 

treatment to accurately monitor mAb glycosylation during CHO cells cultures using in situ 

probes is shown for the first time. Real-time monitoring of glycosylation, in terms of high 

mannose isoforms, fucosylated, sialylated and galactosylated isoforms as well as non-

glycosylated mAb, has been successfully performed by the novel use of Locally Weighted 

Regression (LWR) and Support Vector Regression (SVR). These encouraging results open 

the way for the implementation of control systems on the impact of cell culture operating 

parameters on mAb heterogeneity, particularly glycosylation, during CHO cell culture 

processes through the QbD approach.  
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4.4.1.1.2 Introduction 

 

Monoclonal antibodies (mAb) produced in animal cell culture processes represent a success 

in terms of clinical benefit for patients and revenue generated by biopharmaceutical 

industries. Such molecules are quite sensitive to changes in manufacturing processes and thus 

several mAb variants could be produced within a single batch due to post-translational 

modifications. Glycosylation is the main source of mAb variability which can strongly 

impact mAb clinical properties. Therefore, the control of glycosylation specific profiles of 

mAb during the process is critical for therapeutic efficacy and patient safety. For this purpose, 

regulatory agencies proposed the Process Analytical Technology (PAT) strategy to control 

pharmaceutical manufacturing processes through the continuous adjustment of Critical 

Process Parameters (CPP) which affect Critical Quality Attributes (CQA) of the product. 

Accordingly, continuous monitoring of CQA, such as mAb glycosylation, is required to 

establish advanced retro-control systems to guarantee mAb specifications (Teixeira et al. 

2009a).  

However, continuous monitoring of mAb glycosylation is challenging since it requires 

analyses at a relatively high cost. Complete mAb glycosylation analysis must include 

identification of sugar chains attached to glycosylation sites (macro-heterogeneity) and of 

the sugars moieties within the glycan chain (micro-heterogeneity). Indeed, mAb macro- and 

micro-heterogeneity analyses involve several steps, such as enzymatic digestion, labelling, 

derivatization and separation, followed by structural analysis, usually using mass 

spectrometry (MS) (Sinha et al. 2008). The complexity of such analyses implies significant 

delays, 5 hours to 2 days, mainly for the acquisition of process information, thus mAb quality 

analysis is usually performed at the end of the cell culture process (Rathore and Winkle 

2009).  

In recent years, intensive efforts have been made to establish PAT as the mean to monitor 

mAb glycosylation during cell cultures, particularly using automatic at-line or on-line 

traditional biochemistry approaches with the aim of reducing analysis times and sample 

volumes. Such approaches allow the presence of mAb glycoforms to be known in a question 

of hours (Burnina et al. 2013; Doherty et al. 2013; Henninot et al. 2015; Dong et al. 2016). 

In the last few decades, vibrational spectroscopy, in combination with multivariate analysis, 

has been proven to be a promising tool (Moscetti et al. 2019), particularly for cell culture 
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monitoring (Li et al. 2016). However, it is mainly restricted to some usual cell substrates 

and/or by-products such as glucose, lactate or glutamine (Arnold et al. 2003; Mattes et al. 

2007; Henriques et al. 2009; Clavaud et al. 2013; Bhatia et al. 2018; Li et al. 2018b).  

More recently, a study showed the possibility of monitoring mAb concentration by using 

either Raman or NIR spectroscopy in real-time during CHO cell cultures (Li et al. 2018a). 

Although Raman spectroscopy led to a slightly better estimation for mAb concentration, NIR 

spectroscopy showed a higher signal-to-noise ratio, though in more complex spectra. The 

inferior capacity of the NIR model was thus mainly attributed to the lack of linear PLS 

regression for handling complex NIR spectra, likely containing information in non-linear 

ways (Li et al. 2018a). However, as far as can be ascertained, glycosylation micro-

heterogeneity monitoring has not been addressed. In this study, we showed that in situ NIR 

spectroscopy can be applied for in-line monitoring of mAb glycosylation micro-

heterogeneity.  

As alterations in mAb glycoform patterns may result in strong changes in clinical profiles, 

manufacturers must guarantee glycosylation specifications to ensure reproducible and 

consistent clinical performance. The occurrence of several factors that may compromise 

conservation of clinical profiles is not uncommon in the pharmaceutical industry (Schiestl et 

al. 2011), and so monitoring and control systems are required to ensure mAb properties.  

Conservation of such properties is due to proper combination of glycoforms with different 

sugar moieties within the glycan chain. Indeed, it has been widely reported that the presence 

of fucose, galactose and sialic acid strongly affect antibody dependent cellular cytotoxicity 

(ADCC), complement dependent cellular cytotoxicity (CDC) and immune modulation of the 

mAb, respectively (del Val et al. 2010). On the other hand, high mannose glycoforms are 

reported to reduce serum half-life (Dwek et al. 1995). In this context, producing mAb 

glycoforms with resulting clinical effects similar to those of the reference mAb is critical for 

batch approval (Schiestl et al. 2011). In this study, it was shown that NIR spectra can exhibit 

an estimated correlation to non-glycosylated mAb and total mAb concentration (mAb macro-

heterogeneity), as well as to glycoforms containing fucose, galactose and high-mannose 

structures, including sialic acid within the glycan chains (mAb micro-heterogeneity). 

Furthermore, this approach could have an immediate application using a NIR 
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spectrophotometer in at-line or off-line modes, which could provide mAb glycosylation 

information in question of minutes.   

 

4.4.1.1.3 Theory 

 

 

Spectra, particularly from NIR in-line analysers, are complex since both physical and 

chemical information is contained, usually in a highly collinearity way. Thus, multivariate 

calibration particularly for regression, is needed for correlating complex spectra to desired 

quality attributes or analyte concentration.  

Though many regression methods are available for building calibration models, as far as it 

can be ascertained, only Partial Least Squares Regression (PLSR) has been addressed in cell 

culture monitoring. In this work we analysed the adequateness of PLSR for cell culture 

monitoring and explored the performance of other regression methods such as Support 

Vector Regression (SVR) and Locally Weighted Regression (LWR). The intuitive concept 

of models as well as their characteristics for regression in cell cultures are discussed and 

shown in Figure 4.4-1.  
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Partial Least Squares Regression (PLSR) 

 

The PLSR method is based in a reduction variable process in order to treat collinearity. Firstly 

the spectra (X) and the concentration (Y) matrix is decomposed as (Höskuldsson 1988):  

𝑋 = 𝑇𝑃𝑇 + 𝑅1 (1) 

𝑌 = 𝑈𝑄𝑇 + 𝑅2 (2) 

where X and Y are spectra and concentration matrices respectively, T and U are the pseudo-

scores matrices, P and Q are the pseudo-loadings matrices and R1 and R2 are the residuals 
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Figure 4.4-1. Intuitive concept of regression methods: PLSR creates a chemometric space 

in term of latent variables (LV) and then a linear regression is performed for estimating 

concentration. LWR enhance the fitting of non-linearities by performing local regression 

by weighted PLSR. In contrast to PLSR which generates the regressor by only minimising 

the error, SVR map spectra into a higher dimensional feature space as for fitting the error 

within a particular threshold (±ε) and then the regressor is generated.  
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matrices. Matrix decomposition of X and Y matrices are not independent, thus an internal 

relationship between the scores of X and Y are generated accordingly: 

𝑈 = 𝐵𝑇  (3) 

 

where U is the pseudo-scores of Y to be calculated, T the pseudo-scores of X and B the 

regressor matrix. PLS works with the constraint that these components explain as much as 

possible of the covariance between X and Y. Once the regressor matrix has been determined, 

calculation of y-concentration value from problem sample may be calculated as: 

𝑌 = 𝑇∗𝐵𝑄𝑇 + 𝑅1  (4) 

 

Where T* is the pseudo-scores matrix of the problem sample, B the regressor matrix, QT the 

pseudo-loading matrix of the model and R1 the residual matrix. Regression based on PLSR 

offers a relatively simple frame for analysing the relationship between spectral response and 

prediction by the model. However, it is particularly sensitive to scattering effects and may 

not properly handle information contained in a non-linear way. Therefore, for building 

quantitative calibration models using NIR spectroscopy, a common assumption has been 

focusing on chemical information and limiting the contribution of physical data contained in 

spectra by the use of spectral pre-treatment (Rinnan et al. 2009). However, manipulation of 

spectra for limiting scattering effects may also disturb chemical information (Huang et al. 

2010) and thus a compromise must be adopted. 

PLSR is a variable space-based regression method which calculates the relationship between 

each of the variables (absorptions at different wavelengths) and compound concentrations. 

Therefore, such a relationship should be relatively constant during the whole culture process 

in order to maintain accurate estimations. Though it is an obvious assumption, caution must 

be taken considering the strong physical and chemical variations of culture media during cell 

culture progression. Deviations from this assumption are usually observed as non-linear 

effects (Figure 4.4-1-A) and may limit the predictive capability of models. In such cases, the 

regression equation leads to a linear trajectory of predicted values (grey dotted arrow in 

Figure 4.4-1-A), limiting prediction on non-linear sections (cross in Figure 4.4-1-A). As far 

as can be ascertained, this fact has not been addressed yet in cell culture monitoring. 

Therefore, the novel use of space-based regression methods which firstly focus on affinity 
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and dissimilarity between samples (culture progression information), and secondly on the 

relationship between variables (absorptions at different wavelengths), has been evaluated.  

 

 Locally Weighted Regression (LWR) 

 

LWR is mainly addressed for modelling complex relationships for which no theorical model 

may exist. In contrast to PLSR which generates a regression function considering all 

calibration points, LWR firstly compares the sample to be predicted with samples within the 

calibration set. Then only those calibration samples similar to the sample to be predicted are 

used (the local area) (black circle in Figure 4.4-1-A). Then each point of the local area is 

weighted according to its distance from the sample to predict: close points are given more 

importance or weight, far points are given less weight; then a regression function of the 

independent variables is generated employing the weights and in the local area (Cleveland 

and Devlin 1988) (Figure 4.4-1-B). Generation of accurate models then requires adjustment 

of key parameters such as similarity between samples, definition of the local area and the 

weights, and the nature of the regression itself.  

 

Once spectra have been mapped into a chemometric space (principal component space, latent 

variable space, among others), the local area is determined by a distance function and 

specified limit. Since distance as a delimiting criterion may be inappropriate when lacking 

vast calibration samples in a wide calibration space, several authors have employed distance 

criteria in terms of near calibration samples (Næs and Isaksson 1992; Næs 2004). Then local 

calibration samples are weighted according to a weight function, such as the tricubic function 

(5). Then the weight for a calibration sample is calculated as:  

 

𝑊(𝑢) =  {(1 − 𝑢3)3

0
        

𝑖𝑓 𝑢 ≤ 1
𝑖𝑓 𝑢 >1

     (5) 

𝑤𝑖(𝑥𝑗) = 𝑊 (
𝛿(𝑥𝑗,𝑥𝑖)

𝑑(𝑥𝑗)
)     (6) 

where 

(𝑥𝑗 , 𝑥𝑖): Distance between prediction sample j and calibration sample i 

𝑑(𝑥𝑖): Maximum distance involved in each regression 



4. RESULTS & DISCUSSION 

4.4 CHAPTER IV – Into PAT challenges through NIRS 

 

 

 

163 

 

 

As could be noted, the weights will be large (close to 1) for xi close to xj, and small (close to 

0) for xi far from xj. Once the region and weights have been determined, regression function 

in the local region is generated generally using weighted PLSR. Finally, the concentration 

value for xj is calculated using the local weighted PLSR regressor (grey dotted arrow in 

Figure 4.4-1-B). In contrast to global PLSR that treats all the regression surface at the same 

time, as either linear or non-linear, LWR models non-linear regions without compromising 

linear regions. This approach is particularly adequate for animal cell culture processes in 

which linear and non-linear behaviour may arise differently during different phases of cell 

cultures. Moreover, the use of similar samples in the local area could lead to better spectra 

pre-treatment and thus limiting the loss of information by attenuation of scattering effects in 

spectra. Drawbacks of LWR are the need of dense calibration samples, vulnerability to 

outliers (Naes et al. 1990) and the lack of a mechanistic model where fitted parameters 

specify particular physical or chemical properties of the cell culture. This is of great concern 

since regulatory agencies demand that NIRS signals be directly attributed to analytes or be 

an indirect measurement correlated with light scattering effects (European Medicine Agency 

2014; U.S. Food & Drug Administration 2015). Then submission of monitoring procedures 

would eventually require efforts considering all possible combinations of local regressions.  

 

 Support Vector Regression (SVR) 

 

A relatively novel alternative for non-linear modelling of NIR spectra is SVR (Cogdill and 

Dardenne 2004). The main difference of SVR from other typical regression methods is that 

its objective is not merely to reduce the fitting error but to fit the error within a particular 

threshold (±ε). Then the goal of SVR is to generate a regression function, or hyper plane, that 

has a maximum number of calibration samples at most an ε deviation from an actual 

concentration (yi), and at the same time keeping the function as flat as possible (Smola and 

Schölkopf 2004). For instance, the hyper plane is considered as: 

𝑓(𝑥) = (𝑤𝑥) + 𝑏     (7) 

𝑤𝑖𝑡ℎ    𝑤 ∈ X, b ∈ ℝ, and x being a variable related to spectra 
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Flatness is then assured by minimisation of w, for example minimising the norm as a convex 

optimization problem: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 
1

2
|𝑤|2    (8) 

Subject to 

𝑦𝑖 − (𝑤𝑥) − 𝑏 ≤ ε      𝑎𝑛𝑑      (𝑤𝑥) + 𝑏 − 𝑦𝑖 ≤ ε            (9) 

 

However, it may not be the case that f(x), which approximates all pairs (xi, yi) with ε 

precision, actually exists. Then a soft margin of slack variables ξi, ξ∗i, are introduced for 

coping with unfeasible constraints of optimization (8) as stated by Vapnik (Vapnik 2000):   

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 
1

2
|𝑤|2 + 𝐶 ∑ (ξ𝑖 + ξ𝑖

∗)𝑙
𝑖=1        (9) 

subject to 

𝑦𝑖 − (𝑤𝑥) − 𝑏 ≤ ε + ξ𝑖 ,      (𝑤𝑥) + 𝑏 − 𝑦𝑖 ≤ ε + ξ𝑖
∗    and   ξ𝑖 . ξ𝑖

∗ ≥ 0     (10) 

 

The constant C determines the compensation between the flatness of f(x) and the amount up 

to which deviations larger than ε are tolerated. This general procedure is depicted in Figure 

4.4-1-C. As could be observed, SVR is then less vulnerable to outliers since it could properly 

generalise and leave the outliers in the soft margin (forbidden symbol in Figure 4.4-1-C). In 

complex multivariate data optimization, (9) can be solved more easily in its dual formulation, 

which provides the possibility for extending the procedure to non-linear functions. This could 

be achieved by mapping the xi patterns into some feature space F (Nilsson 1965): 

𝜑: 𝑥 → 𝐹    (11) 

 

Then standard SVR procedure is applied. Mapping into a higher, linear or non-linear, 

dimensional space, may require exacerbated computational power, thus the majority of SVR 

use implicit mapping by kernels. The most common are linear, polynomial and Gaussian 

radial basis function (RBF) kernels. The nature of the calibration set must be considered for 

properly selecting the kernel (Awad and Khanna 2015). The linear kernel is useful in large 

sparse data vectors with linear regularization, the polynomial may fit some soft non-linearity 

and RBF are general-purpose that are generally applied in strong non-linear regularization or 

in the absence of prior knowledge (Awad and Khanna 2015). This approach could be used 
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for generalizing difficult to fit data in complex systems. As well as for LWR, monitoring 

procedure submission could be likely cumbersome for relating SVR parameters to specific 

chemical or physical properties of the cell culture, particularly in strong non-linear processes 

mapped into high dimensional feature space.   

 

 

4.4.1.1.4 Materials and methods 

 

 

Cell cultures for NIR spectra acquisition 

 

The bioreactor data set was designed with routinary monitoring for batch culture in mind.  

Several cultures of CHO cells were performed in 2 L bench-top bioreactors (Pierre Guérin, 

France) with a 1.5 L working volume: three batch cultures, two feed-harvest cultures with 

medium renewal and one batch culture with glucose spiking. The three batch cultures were 

intended to observe inter-batch heterogeneity as well as in-line and off-line expected 

routinary responses. Feed-harvest cultures were used for increasing the variance of mAb 

glycoforms within the calibration process, which could enhance model prediction capability. 

These were started after a first phase in batch mode, then 2/3 of cell culture was withdrawn 

and replaced by fresh culture medium. This procedure was repeated 2 and 4 times for these 

2 feed-harvest cultures respectively. As relative abundance of particular mAb glycoforms is 

partially a function of cell culture progression, the use of feed-harvest cultures favoured not 

only samples with mAb at the beginning of the cultures, but also cell cultures with a wider 

variability of mAb glycoforms. Batch culture with glucose spiking was used for increasing 

mAb concentrations so that these values during routinely batch culture monitoring relied 

preferably within an appropriate concentration range.      

The culture medium was a protein-free medium mixture consisting of a 1:1 volume ratio of  

PF-CHO (HyClone) and CD-CHO (Fisher Scientific) supplemented with 4 mM L-glutamine 

(Sigma Aldrich) and 0.1 % pluronic F-68 (Sigma Aldrich). The genetically modified DG44 

CHO cell line was used (human anti-Rhesus D mAb-producing CHO M250-9), kindly 

provided by Bioprocessing Technology Institute (Singapore). Dissolved oxygen (DO) was 

controlled at 50 % air saturation and agitation rate was fixed at 90 rpm throughout the culture. 
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Temperature was maintained at 37 °C and pH was set and controlled at 7.2 using 0.5 M 

sodium hydroxide and CO2.  

In-situ (or in-line, invasive) spectral scanning of bioprocess culture media was carried out 

with a NIR transflectance probe with 1 mm pathlength (Precision Sensing Devices, MA). 

The autoclavable probe was connected to an Antaris II spectrometer (Thermo Scientific, 

USA). Each NIR spectrum corresponded to an average of 128 scans from 1,000 to 2,500 nm. 

 

Off-line analyses  

 

Off-line concentration of total mAb was determined using an enzymatic kit (Roche Life 

Science) with an automatic spectrophotometer (Thermo Scientific GALLERY) against 

external standards. The nature and concentration of mAb heterogeneity in the form of 

glycoforms was elucidated by HPLC/UHPLC-mass spectroscopy analysis, as previously 

described (Li et al. 2018b). Off-line concentration values for calibration included and 

exceeded those expected during routinary monitoring of batch cultures (0 – 240 mg.L-1 and 

0 – 75 mg.L-1 for total mAb and NG-mAb respectively) and also the variability of mAb 

glycoforms. Off-line total mAb concentration range used for calibration was 0 – 380 mg.L-1, 

off-line NG-mAb range was 0 – 98 mg.L-1. Analysis of mAb glycoform relative abundance 

profiles revealed a significant difference between exponential and stationary-death phase of 

cultures (One-way ANOVA, p ≤0.05), particularly for NG-mAb, G0F, G1F, G2F and Man5 

mAb glycoforms (data not shown). Moreover, enhancement of prediction capacity is 

expected since the use of feed-harvest cultures increased mAb glycoform variability during 

the calibration process.  

 

Development and analysis of calibration models  

 

Firstly, in order to generate the calibration methods for mAb glycoforms, special attention 

was given to spectrum pre-processing according to Huang (Huang et al. 2010). The presence 

of additive, multiplicative and wavelength-dependent effects due to scattering was evaluated 

within the calibration set spectra. The most common techniques to eliminate undesired 

spectral variations caused by light scattering (Multiplicative Scatter Correction-MSC, 
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Probabilistic Quotient Normalization-PQN, Standard Normal Variate-SNV, Extended 

Multiplicative Scatter Correction-EMSC, derivatives) were evaluated. The standard 

deviation for each wavelength was used to elucidate the effect of scattering on calibration 

spectra; this data was considered for final spectral pre-treatment. The calibration set 

comprised 168 spectra collected from six bioreactor cultures. PLSR, LWR and SVR models 

and statistical analysis were performed in MATLAB® (Statistics and Machine Learning 

Toolbox™, MATLAB R2016a, The MathWorks, Inc., Natick, Massachusetts, United States) 

using chemometric software (PLS_Toolbox® 8.2.1, Eigenvector Research, Inc., Manson, 

WA, United States). Model performance was evaluated for accuracy by Root Mean Square 

Error of cross-validation (RMSECV) and square correlation coefficients (R2). A low value 

of RMSECV is related to enhanced accuracy, while a high value R2 value indicates that the 

model properly handles spectrum variability to perform concentration estimation.   

Firstly, PLSR models were performed using a venetian blinds cross-validation. 

Determination of latent variable (LV) number was based on the goodness of estimation 

(Q2Y): the minimum number of LVs was obtained when Q2Y ceased to improve. LWR was 

applied to fit global non-linear relationships by local linear regressions using PLSR and the 

classic cubic weight equation. Determination of local areas in term of local points, and LV 

number, was performed by optimization of these parameters with RMSECV as the response 

variable. For SVR models, an epsilon-support vector regression using a Gaussian radial basis 

function kernel was used. SVR models were optimized using a random subset cross-

validation approach with maximal error values corresponding to deviations up to 10 % from 

actual values.  

 

In situ monitoring of mAb glycoforms   

 

The focus of the work was primarily to analyse predicted or estimated kinetic profiles using 

batch culture. This provides a frame containing different physiological cell states within lag, 

exponential, stationary, and death phases of batch culture which dynamically impact the 

nature of mAb glycoform profiles. This strategy may be useful to infer model performance 

in different matrix compositions, which may help in future work. 
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Once calibration models were optimized, they were used independently to perform in situ 

monitoring of mAb glycosylation during a CHO cell culture. Characterization of mAb was 

carried out in terms of macro-heterogeneity (total mAb concentration, glycosylated mAb and 

non-glycosylated mAb) and micro-heterogeneity (high mannose glycoforms and glycoforms 

containing any fucose, sialic acid and galactose moiety). A NIR analyser was programmed 

for performing automatic in situ scanning of culture medium every 20 min. Batch culture 

monitoring produced 500 spectra from which only 27 were used for calibration. Thus 

approximately 95 % NIR data was not used to establish the models and may further depict 

the prediction performances of models. For the evaluation of monitoring, models mimick 

real-time monitoring of the mAb producing cell culture process. Spectra captured every 20 

min were then used as inputs. Then calibration models returned mAb concentration values 

that were used to real-time generate the kinetic profiles of mAb macro- and micro-

heterogeneity. As global therapeutic effects of mAb is mainly a function of the micro-

heterogeneity profile of the lot, real-time glycosylation data from best models were used to 

real-time monitor the global glycosylation profile of the produced lot. Firstly, the macro-

heterogeneity profile was determined as the relationship of NG-mAb concentration estimated 

by the SVR model, with total mAb concentration estimated by the LWR model. Secondly, 

the micro-heterogeneity profile was determined as the relationship of fucosylated, 

galactosylated, sialylated and high mannose glycoforms with glycosylated mAb 

concentration, using SVR models.   

 

4.4.1.1.5 Results and discussion 

 

Development and analysis of NIR models based on PLSR, LWR and SVR methods 

 

Spectra for calibration were evaluated for scattering effects (Figure 4.4-2-A). The most 

common techniques to eliminate undesired spectral variations caused by light scattering 

(MSC, SNV, EMSC, derivatives) were evaluated. General analysis of spectra revealed some 

scattering effects such as additive effect (baseline shift), multiplicative effect (offset of 

spectra) and a likely wavelength-dependent effect from approximately 1000 to 1500 nm 

(Figure 4.4-2-B).  
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Table 4.4-1. Spectral pre-treatment used for models 

Compound Regression  

method 

Pre-treatment 

 

Total mAb 

PLSR EMSC + SNV  

LWR SNV  

SVR EMSC  

 

NG-mAb 

PLSR EMSC  

LWR Detrend + MSC  

SVR MSC 

 

Glycosylated-mAb 

 

PLSR EMSC  

LWR EMSC  

SVR MSC  

F-glycoforms SVR MSC 

G-glycoforms SVR MSC 

S-glycoforms SVR MSC 

HM-glycoforms SVR MSC 

NG-mAb: Non-glycosylated mAb; G-mAb: Glycosylated mAb; F-glycoforms: 

Glycoforms containing Fucose; G-glycoforms: Glycoforms containing galactose; S-

glycoforms: Glycoforms containing sialic acid; HM-glycoforms: Glycoforms of high 

mannose structures. EMSC: Extended Multiple Scatter Correction, SNV: Standard 

Normal Variate, MSC: Multiple Scatter Correction. Auto scale was always applied as last 

pre-treatment step 

 

 

These effects were particularly observed in spectra of stationary and cell death phases where 

maximum mAb concentration was achieved (data not shown). Only EMSC was effective for 

limiting the likely wavelength-dependent effect, also the use of derivatives with any 

normalization pre-processing, particularly 2nd order derivative with MSC (Figure 4.4-2-B). 

This analysis was firstly used for selecting spectra pre-treatments for models. After spectral 

analysis, random trials of promising pre-treatments and their combinations were assed for 

reducing RMSECV of models.  
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Figure 4.4-2. Nature of spectra for calibration: Process instrument raw spectra for calibration 

(A), effect of common spectral pre-treatments on spectra variability and scattering effects, 

MSC: Multiplicative Scatter Correction, SNV: Standard Normal Variate, EMSC: Extended 

Multiplicative Scatter Correction (B).  

 

In general terms EMSC leaded to PLSR models with lower RMSECV, likely due to a proper 

compromise between reduction of spectra variability and scattering effects, particularly 

multiplicative and wavelength-dependent effects. The use of derivatives after normalization, 

limited the predictive power of PLSR models (data not shown), likely due to a strong 

reduction on spectra variability (Figure 4.4-2-B) and thus reduction on chemical information. 

On the other hand, LWR and SVR showed greater management of scattering effects, 

particularly wavelength-dependent effect since only MSC was sufficient for reduction of 
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RMSECV values in almost all models. Final spectral pre-treatments used for calibration are 

shown in Table 4.4-1.  

Construction of mAb glycosylation models was performed using different regression 

methods (PLSR, LWR and SVR) as reported in Materials and Methods. Performances of 

models during calibration are summarized in Table 4.4-2. PLSR models leaded to poor 

estimation capability, even for total mAb concentration. PLSR is a variable space-based 

regression method which calculates the relationship between each of the variables 

(absorptions at different wavelengths) and compound concentrations. Such a relationship 

should be relatively constant during the whole culture process in order to maintain accurate 

estimations, including the scattering nature of the matrix. Perhaps the most evident deviation 

from this assumption is the fact that scattering effects occurred and impacted spectra in 

different ways, depending on the increase in scattering compounds (cells, cell debris, among 

others) according to batch culture progression. A plausible reason for poor performance is 

the limited capacity of PLSR for handling multiplicative and wavelength-dependent effects 

(Martens et al. 2003), likely caused by scattering compounds. Handling spectra with such 

different scattering natures with the same spectral pre-proccesing as commonly done in 

PLSR, would not only lead to correcting response in a narrow frame but also masking 

chemical information in the uncorrected frame.   

As a result, LWR and SVR were, for the first time, evaluated for cell culture monitoring. 

LWR and SVR are sample space-based regression methods which firstly focus on affinity 

and dissimilarity between samples (batch progression information), and secondly on the 

relationship between variables (absorptions at different wavelengths) and compound 

concentrations. LWR uses only similar samples in the PLS space to perform local regression 

using weighted PLSR, while SVR consists of a number of support vectors corresponding to 

samples from the calibration set and non-linear model coefficients defining the relationships 

between spectra and compound concentrations. As LWR and SVR use only similar samples 

with a similar matrix nature, including similar scattering effects, it is likely that non-desirable 

effects of spectral pre-processing are limited.    

 

  



4. RESULTS & DISCUSSION 

4.4 CHAPTER IV – Into PAT challenges through NIRS 

 

 

 

172 

 

Table 4.4-2. Performance of models during calibration 

Model structure Range 

(mg.L-1) 

RMSECV R2 Compound 

(mg.L-1)       (%) 

PLSR: 5 LV 

LWR: 4 LV, 21 LP  

SVR: 120 SV 

 

0 - 380 

34.1               9 

31.1               8 

32.4               8 

0.85 

0.90 

0.87 

 

Total mAb 

PLSR: 3 LV 

LWR: 12 LV, 15 

LP 

SVR: 148 SV 

 

0 - 98 

19.0              19 

15.0              15 

10.4              11 

0.38 

0.61 

0.70 

 

NG-mAb 

PLSR: 3 LV 

LWR: 3 LV, 15 LP 

SVR: 158 SV 

 

0-330 

47.1              14 

37.5              11 

33.1              10 

0.70 

0.81 

0.83 

 

Glycosylated-mAb 

 

PLSR: 4 LV 

LWR: 24 LP, 3 LV 

SVR: 167 SV 

 

0 - 262 

37.6              14 

28.3              11 

27.9              11 

0.68 

0.82 

0.83 

F-glycoforms 

PLSR: 5 LV 

LWR: 20 LP, 5 LV 

SVR: 166 SV 

 

0 - 147 

17.6              12 

13.7               9 

13.3               9 

0.71 

0.83 

0.85 

G-glycoforms 

PLSR: 4LV 

LWR: 12 LP, 4 LV 

SVR: 148 SV 

 

0 - 19 

2.4                13 

2.2                12 

1.9                10 

0.70 

0.74 

0.81 

S-glycoforms 

PLSR: 5 LV 

LWR: 15 LP, 3 LV 

SVR: 166 SV 

 

0 - 47 

6.8                14 

5.4                12 

4.6                10 

0.62 

0.77 

0.83 

HM-glycoforms 

NG-mAb: Non-glycosylated mAb; G-mAb: Glycosylated mAb; F-glycoforms: 

Glycoforms containing Fucose; G-glycoforms: Glycoforms containing galactose; S-

glycoforms: Glycoforms containing sialic acid; HM-glycoforms: Glycoforms of high 

mannose structures. LV: Number of Latent Variable used for the PLSR and LWR models, 

LP: Number of local points used for the LWR models, SV: Number of Support Vectors 

used by the SVR models. 

 

 

Results showed that, in contrast to PLSR performance, SVR and LWR were superior for 

estimating the concentration of all glycoforms (Table 4.4-2). This can be explained by the 

fact that SVR and LWR not only consider the relationship between spectra and compound 

concentrations, but also cell culture progression in terms of cell density, viability and 

metabolite concentrations. With the exception of total mAb which was better estimated by 

LWR, SVR was likely the best option for all mAb glycoforms, particularly glycosylated 

mAb.  

 



4. RESULTS & DISCUSSION 

4.4 CHAPTER IV – Into PAT challenges through NIRS 

 

 

 

173 

 

Real-time monitoring of mAb glycosylation  

 

Firstly, mAb glycosylation macro-heterogeneity monitoring was addressed as shown in 

Figure 4.4-3. As expected, evaluation of PLSR models revealed a limited capacity for 

monitoring mAb macro-glycoforms, particularly non-glycosylated mAb, due to non-linear 

relationships between spectra and non-glycosylated mAb concentration (data not shown). In 

fact, non-linear relationships are likely the result of physical (scattering, mass and heat 

dynamics) and chemical (chemical composition changes) phenomena that strongly change 

the interaction of NIR radiation with mAb during progression of batch cell cultures. LWR 

breaks global nonlinearity by performing several local regressions using only similar 

samples. In this context, LWR was successful in monitoring total and glycosylated mAb 

concentration (Figure 4.4-3) that display some non-linearity mainly associated to physical 

phenomena. However, for non-glycosylated mAb, only trends were observed. Limited 

capacity to estimate NG-mAb concentration by the LWR model is explained by the fact that 

an inherent nonlinear relationship between spectra and concentration existed (data not 

shown), which cannot be properly modelled by the local linear regressions. As shown in 

Figure 4.4-3, the novel use of LWR and SVR as enhanced regression methods, allowed the 

proper monitoring of total mAb and NG-mAb respectively. These results demonstrated the 

capability to monitor mAb glycosylation macro-heterogeneity in real-time, using in situ NIR 

spectroscopy. As more accurate and stable estimations of glycosylated mAb concentration 

were achieved using SVR, calibration for glycosylated glycoforms was addressed using the 

SVR approach.      

As for mAb micro-heterogeneity, among a total of 25 potential glycosylated mAb glycoforms 

reported for mAb produced in CHO cell cultures (Sinha et al. 2008), only some glycoforms 

were detected off-line (data not shown). Thus, mAb micro-heterogeneity models were 

generated based on the detected glycoforms that contained particular sugar moieties 

conferring clinical properties. Detected glycoforms were classified into 4 groups for mAb 

micro-heterogeneity model development, corresponding to high mannose, fucosylated, 

sialylated and galactosylated isoforms (Table 4.4-3).  
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Table 4.4-3. Glycoforms considered for NIR mAb micro-heterogeneity calibration models 

NIR  

models 

  

Fucosylated 

  

Galatosylated 

  

Sialylated 

  

High 

Mannosylated 

 

 

Glycoforms 

 G0F, G1F, G2F, 

G0F-N, G1F-N, 

G0FN, G1FN, 

G2FN, G1FS, 

G2FS, G2FS2, 

G1FS-N 

 G1F, G2F, G1F-N, 

G1, G2, G1FN, 

G2FN, G2N, 

G1FS, G2FS, 

G2FS2, G1S, G2S, 

G1FS-N 

 G1FS, 

G2FS, 

G2FS2, 

G1S, G2S, 

G1FS-N 

 Man5, Man6, 

Man7, Man8 

Oligosaccharide structures attached to the conserved site (Asn 297) in each heavy chain of the 

mAbs. 

F a fucose moiety in the sugar chain; G a galactose moiety in the sugar chain: 0 no galactose, 1 a 

galactose in only one branch, 2 if both branches galactosylated; S a sialic acid in the sugar chain: 

no number if a S in only one branch, 2 if both branches contain a S; N N-acetylhexosamine in the 

sugar chain; Man mannose moieties in the sugar chain, number indicating the number of mannose 

moieties in the sugar chain.  
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Figure 4.4-3. Comparison of PLSR, LWR and SVR models to monitor mAb macro-

heterogeneity glycoforms concentration by in situ NIR spectroscopy, during batch CHO 

cell culture 
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As a glycosylated chain may contain different sugar moieties, it is possible that one particular 

glycoform be considered for two or more calibration models. SVR was capable of properly 

extracting mAb glycosylation information from NIR spectra, which allowed mAb micro-

heterogeneity monitoring as shown in Figure 4.4-4. Even sialylated and high mannose 

glycoforms whose concentrations were low (<15 mg.L-1), were specifically detected. These 

results demonstrated the capability of in situ NIR spectroscopy to quantitatively monitor 

mAb micro-heterogeneity.  

 

Figure 4.4-4. Performance of SVR models to monitor mAb micro-heterogeneity 

glycoforms concentration by in situ NIR spectroscopy, during batch CHO cell culture. 
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According to the QbD initiative, real-time monitoring should finally be used for performing 

advanced retro-control. Therefore, concentration values of mAb glycoforms must also be 

monitored using a reference frame as for setting target values for glycoforms ratios, which 

are related to mAb clinical effects. Monitoring of a process under this approach is a more 

challenging task since calculation of ratios could increase the bounce of glycoforms ratio 

profiles. For example, monitoring the extension of mAb macro-heterogeneity or the ratio of 

glycosylated mAb with total mAb concentration, would add the error of predictions of both 

glycosylated mAb model and total mAb model. This fact could compromise the resolution 

of the final mAb glycosylation profiles and so further control strategies. Therefore, the 

capability of models to clearly show these final profiles was investigated in the form of a 

control chart as shown in Figure 4.4-5.  

Only best models were used for calculating the mAb macro- and micro-heterogeneity 

profiles. For the in-line mAb macro-heterogeneity profile, the fraction of glycosylated mAb 

was calculated as the ratio of glycosylated mAb (estimated by SVR) with total mAb 

concentration (estimated by LWR). Only SVR models were used for mAb micro-

heterogeneity monitoring. For the in-line mAb micro-heterogeneity profiles, the fraction of 

either fucosylated, galactosylated, sialylated and high mannose glycoforms was calculated as 

the ratio of particular glycoform with glycosylated mAb concentration. Then micro-

heterogeneity profiles could be monitored in real-time as the fraction of glycoforms 

containing particular sugar moieties within the glycosylated chain, which are closely related 

to clinical properties of mAb medicine.  

Once mAb concentration was higher than 30 mgL-1, models allowed proper monitoring of 

mAb glycosylation profiles. This approach was encouraging for monitoring mAb macro-

heterogeneity since accurate tendencies were observed during the whole culture, particularly 

for the abrupt decrease of mAb glycosylation around 100 h after the beginning of the process. 

As for mAb micro-heterogeneity, particularly for the fucosylated glycoform profile, a limited 

capacity was observed between 45 h to 70 h of the culture. This behaviour was also observed, 

though to a lesser extention, for the galactosylated glycoform fraction profile. On the other 

hand, sialylated and high mannose isoforms profiles were properly estimated even at low 

concentrations. Results demonstrated the potential of SVR, LWR and NIR spectroscopy for 

real-time monitoring of mAb glycosylation properties during CHO cell culture processes. 
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Moreover, accuracy on concentration monitoring also permitted monitoring of accurate 

trends of mAb glycoforms ratios, closely related to mAb clinical effects. Then such mAb 

glycoforms ratios could be used as target values for later control.  

 

Real-time estimation (lines) and off-line values (symbols) for the groups of ( , ) glycosylated 

mAb, ( , ) fucosylated mAb, ( , ) galactosylated mAb, ( , ) sialylated mAb and (

, ) high mannose mAb. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4-5. Example of model performances for automatic in-line monitoring of mAb 

glycosylation profiles:  The mAb macro-heterogeneity profile was calculated as the 

concentration ratio between glycosylated mAb (estimated by SVR model) and total mAb 

(estimated by LWR model). The mAb micro-heterogeneity profiles were calculated as the 

ratio of fucosylated, galactosylated, sialylated and high mannose glycoforms in relation to 

glycosylated mAb concentration (all estimated by SVR models).  
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Overall, these are encouraging results for the use of NIR spectroscopy for developing new 

retro-control systems. However, caution must be taken when discussing eventual prediction 

capability of LWR and SVR in particular for mAb production processes. The same 

consideration should be shown in the case of NIR spectroscopy, as it contains both physical 

and chemical information linked to chemical and physical phenomena within processes. 

There is always the possibility of new variables in new production processes that have not 

been considered yet are critical to the performance of this newly developed prediction 

platform.  

 

 

4.4.1.1.6 Conclusions 

 

Data demonstrating the feasibility of NIRS to monitor mAb glycosylation in situ has been 

presented. In this study, the monitoring of both macro- and micro-heterogeneity of 

glycosylated mAb was improved by the novel use of sample space-based regression methods, 

particularly SVR, that could handle non-linear relationships between glycoforms and spectra. 

As far as it can be asserted, this is the first report of real-time and in situ monitoring of mAb 

macro- and micro-heterogeneity using NIR spectroscopy as well as the first report of LWR 

and SVR methods for cell culture monitoring. Such methods dealing not only with chemical 

but also some physical information contained within spectra, highlight the importance of 

considering the strongly dynamic nature of cell culture processes for accurate monitoring by 

calibration models.  

There is an increasing number of new mAb producing processes including mAb biosimilars 

and biobetters (del Val et al. 2012), and one can assume that in situ spectroscopy methods 

will be implemented systematically to fulfil the demand in regard to quality. This study lays 

the foundation for future studies to expand the capabilities of in situ spectroscopy and 

multivariate analysis to monitor mAb properties so that enhanced retro-control strategies can 

be established, leading to a more efficient design and control of processes using PAT and the 

Quality by Design principles. 
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4.4.1.2 In situ cell differentiation monitoring of Catharanthus roseus suspension culture 

processes by NIR spectroscopy 
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Dermitz Dulce María1, Hayward-Jones Patricia Margaret1, Aguilar-Uscanga María 

Guadalupe1* 

1 Tecnológico Nacional de México/Instituto Tecnológico de Veracruz: Calz. M.A. de 

Quevedo 2779, Veracruz, Ver. Mexico.  

2 Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, LRGP, 

2 avenue Forêt de Haye, TSA 40602, 54518 Vandœuvre-lès-Nancy, France.  

 

4.4.1.2.1 Abstract 

 

 

Plant suspension culture is attracting interest as a promising platform to produce biological 

medicines due to the absence of virus, prions or DNA related to mammals during the 

production process. However, the heterogenic plant cell proliferation nature is particularly 

challenging for establishing industrial processes based on innovative approaches currently 

used, particularly in the animal cell culture industry. In this context, while Process Analytical 

Technology (PAT) approaches have been used to monitor classical parameters such as 

biomass dry weight, its use in cells heterogeneity has received limited attention. Therefore, 

the feasibility of in situ monitoring of cell differentiation in plant cell suspensions employing 

NIR spectroscopy and chemometrics was investigated. Off-line measurements of cell 

heterogeneity in term of cell differentiation and in-line NIR spectra captured in 3 L bioreactor 

cultures were employed to generate calibration models. Then models were tested to estimate 

the population distribution of parenchyma, collenchyma and sclerenchyma cells during 

Catharanthus roseus suspension cultures. Results have proven in situ NIR spectroscopy as a 

capable PAT tool to monitor differentiated cells accurately and in real-time. These results are 

the starting point to follow up PAT systems so that plant cell culture heterogeneity may be 

better understood and controlled in biopharmaceutical plant cell cultures. 

 

4.4.1.2.2 Introduction 

 

Plant cell suspension cultures have attracted interest in biological medicine production due 

mainly to safety aspects (Fischer et al. 2004). In this context, some companies have started 
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to industrially produce biologicals using recombinant plant cell suspension cultures. 

Examples of the potential of this technology are the industrial production of human 

glucocerebrosidase and immune-protective proteins (Huang and McDonald 2009), also the 

production of paclitaxel, shikonine, berberine and cosmetics by wild species. The relatively 

novel application of plant suspension cultures for biologicals manufacturing has implied a 

delay on the implementation of biopharmaceutical trends such as the use of Process 

Analytical Technology (PAT). The main objective of PAT is to real-time monitor and control 

critical process parameters, such as cells and culture media compounds, whose variability 

have an impact on titer or quality of the biological medicine, as to ensure the best process 

performance (Teixeira et al. 2009b). Consequently, strategies for monitoring of cell culture 

processes must be firstly developed for the further application of PAT. As far as it can be 

ascertained, development of real-time monitoring tools for plant cell suspension cultures has 

only considered the packed cell volume or cell dry weight using conductivity and permittivity 

analyzers (Markx et al. 1991; Kwok et al. 1992; Holland et al. 2013). However, plant cells 

in suspension cultures are highly heterogenic and thus such approaches fail in providing 

information of cell heterogeneity, which may limit the implementation of PAT strategies.  

Indeed, plant cells morphology is dynamic and strong changes in cell volumes and shapes 

may occur during cultures, causing limited significance of classic monitoring variables such 

as cell dry weight or packed cell volume (Kim et al. 1994a). Moreover, genetic and 

phenotypic changes usually occur in terms of somoclonal variation (Deus-Neumann and 

Zenk 1984) and cell differentiation (Torrey 1975). The complex nature of cell proliferation 

in cell aggregates is not only a challenge during production cultures, but also for the 

establishment of monoclonal cell lines. Therefore recombinant biologics production is 

usually performed by polyclonal cultures (Nocarova and Fischer 2009). All these sources of 

heterogeneity in plant cell suspension cultures must be understood, monitored and controlled 

to continuously improve the cell culture processes as encouraged by regulatory agencies. 

Therefore, the aim of this study was to evaluate the feasibility of in situ NIR spectroscopy 

for real-time monitoring of cell culture heterogeneity in term of cell differentiation. This 

study lays the foundation for future studies to expand the capabilities of PAT tools for in situ 

real-time monitoring of cell heterogeneity in biopharmaceutical production processes based 

on plant cell suspension cultures. In this context, NIR spectroscopy could be a monitoring 
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platform for real-time monitoring of the state of cells firstly, providing meaningful 

information of cell physiological state using calibration models, and then secondly 

performing retro-control strategies, leading to a more efficient design and control of plant 

suspension culture processes. 

 

4.4.1.2.3 Material and methods 

 

 

Heterogeneity analysis, calibration and in-line monitoring. 

Heterogeneity analysis. Firstly, the cell culture process was subject to heterogeneity analysis 

using off-line data from three batch cultures in bioreactors. Analysis of the relationship 

between cell concentration and cell dry weight, as well as cell differentiation and morphology 

were performed. Secondly, Principal Component Analysis (PCA) was used to reduce the 

dimension of spectral data and then reveal dissimilarities, leading to qualitatively analysis of 

the impact of cell heterogeneity on NIR spectra.  

Calibration. Three batch cultures were used to collect in-line (NIR spectra) and off-line (cells 

properties) data. Then both types of data were used to generate calibration models. Models 

for parenchyma, chlorenchyma and sclerenchyma cells, were created using Partial Least 

Squares Regression (PLSR) with venetian blinds cross-validation and the NIPALS 

algorithm. Determination of latent variable (LV) number was based on the goodness of 

estimation (Q2Y), which is the fraction of the captured variation of the cell concentration 

estimated by the model. The minimum number of LVs was obtained when Q2Y ceased to 

improve, which was in all cases when models captured over 90 % of cell concentration 

variation. Spectra data was pre-treated using Probabilistic Quotient Normalization (PQN), 

Savitzky–Golay second derivative algorithm and Standard Normal Variate (SNV), mean 

centering was used as last pre-treatment. The estimation capacity of calibration models was 

statistically assessed in terms of accuracy, precision and linearity using the Root Mean 

Square Error of Cross Validation (RMSECV), the relative error of estimation (REE) and the 

coefficient of correlation (R2) respectively. Spectra acquisition was captured directly from 

the analyzer. Then multivariate calibration models and statistical analysis were carried out 

using PLS-Toolbox 8.2.1 (Eigenvector Research Inc.) in the R2016a MATLAB® 

environment (MathWorks Inc.).  
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In-line monitoring and validation of models. To evaluate the capacity of the models for 

performing real-time and in situ monitoring, NIR spectra collected every 30 min during batch 

cultures, were used as inputs for the calibration models. Then off-line and in-line kinetic 

profiles were compared for internal validation.  

 

Bioreactor cultures and in-line spectra acquisition 

 

Cell cultures were performed in 3 L benchtop bioreactors (Applikon, the Netherlands) with 

2 L working volume. Three batch cultures were performed for obtaining off-line and in-line 

data of cultures. Agitation of suspension culture was performed by a spin-filter coupled to a 

marine impeller. The set points for all cultures were for temperature 30 °C and stirring 90 

rpm. Aeration of cultures consisted in air flux of 200 mL.min-1. Dissolved oxygen (DO) and 

pH (5.6) were maintained at 50 % saturation and 5.6 respectively in only one batch culture 

(batch 1) (Applikon Bio controller ADI 1010). For the other two batches (batch 2 and 3), pH 

and DO were monitored but not controlled. Bioreactors were illuminated by a LED light 

panel below the jar in a 16 h/d photoperiod (50 μmol.m-2 s-1 photonic flux). Culture media 

was the same as subsequent described but supplemented with 1000 ppm Plant Preservative 

Mixture (Plant Cell Technology), culture media was filter-sterilized using a bottle top filter 

(0.20 μm, Thermo Scientific™ Nalgene™) and then tipped out into the autoclaved 

bioreactor. Inoculation consisted in adding approximately 100 mL of 6-days-old suspension 

culture into the bioreactor containing 1.9 L of culture media.  

An in situ or in-line transflectance probe (Precision Sensing Devices, Inc., Medfield, MA) 

with 6 mm effective pathlength was coupled to the bioreactor, the probe was connected to a 

XDS Process Analytics near infrared spectrophotometer analyzer (Foss NIR Systems, Silver 

Spring, USA). A culture media scanning corresponded to an average of 64 scans with a 0.5 

nm resolution from 800 nm to 2200 nm.  

 

Inoculum preparation and culture media 

 

The suspension cultures of Catharanthus roseus were generated from callus cultures 

generated from leaf tissues. Calluses with similar friability, color and age were used to 
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generate suspension cultures. Approximately 5 g fresh callus was placed into 20 mL liquid 

MS media supplemented with 2 mg.L-1 glycine, 100 mg.L-1 myo-inositol, 30 g.L-1 sucrose, 

2, 4-Dichlorophenoxyacetic acid (2, 4-D), 4.44 μM 6-Benzylaminopurine (BAP). The pH 

was adjusted to 5.7 ± 0.1 with 0.5 N NaOH and 0.5 N HCl and the medium was autoclaved 

at 121°C for 15 min. Cultures were then incubated during six days in 125 mL Erlenmeyer 

flasks in 16 h.d-1 photoperiod (30 μmol.m-2 s-1 photonic flux), 25°C and shaken at 100 rpm 

on an orbital shaker. After the first culture, the suspension culture was filtered using a sterile 

stainless-steel mesh (2.25 mm2 pore size) to retain callus clusters. Then approximately 20 

mL culture volumes were used to equally inoculate two flasks containing 10 mL culture 

media, which were then cultured under the same conditions. Two subsequent subcultures 

were performed for biomass propagation. Then 16 flasks containing a total of 320 mL were 

concentrated by repeated cell decantation until an approximate 100 mL concentration was 

achieved which was used to inoculate bioreactors cultures. This procedure was repeated for 

every bioreactor inoculation.    

 

Off-line analysis measurements 

 

Cell differentiation. This was analysed by optical microscopy (Motic, MO-567, USA). 

Differentiation analysis of cells in suspension cultures was undertaken based on cell wall 

differences using botanical main classification (Mauseth 2014): parenchyma, collenchyma 

and sclerenchyma cells. Cells identification and counting were performed in enzymatically 

digested suspension culture aggregates. A sample of 1 mL was put into a 1.5 mL micro-

centrifuge tube and centrifuged (250 rcf, 15 min); 900 μL of the supernatant were put in a 

tube and 900 μL digestion enzyme (TrypLE™ Express Enzyme (1X), Thermo Fisher 

Scientific) were added to the pellet. The tube was agitated in a vortex (MX-S, Science MED) 

for 45 min, centrifuged under the same conditions, and the pellet was isolated in 300 μL by 

discarding the supernatant, resulting in a digested cell suspension suitable for analysis. Cells 

in digested cell suspensions were analysed and counted twice in a Neubauer improved 

chamber, each count comprising between 75 and 120 cells.   

Biomass dry weight. A volume of 1.0 mL suspension culture was put in an already weighed 

1.5 mL micro-centrifuge tube. The tube was centrifuged (10,000 rcf, 10 min; Eppendorf 
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5424), its content decanted and then 1.0 mL deionised water added. Centrifugation and 

decantation were repeated, then the washed pellet was vacuum-dried (65°C, ShellLab mod. 

1410) until constant weight was reached (Mettler H80).   

 

4.4.1.2.4 Results and discussion 

 

 

Heterogeneity analysis of the plant cell culture process 

 

Heterogeneity of the culture process was firstly analysed. The relationship between cell 

concentration and biomass dry weight showed different profiles for the three cultures (Figure 

4.4-6-A). This inter-batch heterogeneity was attributed to changes in morphology and weight 

of cells within cell aggregates, particularly due to differentiation of cells into parenchyma, 

collenchyma and sclerenchyma condition within cell aggregates (Figure 4.4-6-B). A 

plausible reason for non-consistent differentiation rate within cultures is the presence of 

diverse microenvironments in cell aggregates, which differently impact cell physiological 

state. Cell differentiation dynamics during culture is shown in Figure 4.4-6-C. Analysis 

showed that parenchyma cells mainly supported culture growth while collenchyma cells were 

likely to have limited proliferation capacity. On the other hand, as sclerenchyma cells are 

programmed to die, increase of cell concentration was only caused by cell differentiation. In 

this context, cell differentiation into sclerenchyma status was likely to be slow and constant 

during the culture, though cell differentiation into collenchyma from parenchyma status was 

relatively fast, as demonstrated by the abrupt decrease and increase of parenchyma and 

collenchyma cells respectively around 100 h of culture.  
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Figure 4.4-6. Heterogeneity within plant cell suspension cultures: (A) Inter-batch 

heterogeneity due to changes in cell properties. (B) Example of cell heterogeneity in term of 

cell differentiation within aggregates: Parenchyma cells (dark arrows), collenchyma cell 

(white arrow), and sclerenchyma cell (tringle). (C) Dynamics of cell differentiation with pH 

and DO controlled condition (Batch 1). (D) Inter-batch heterogeneity effect on calibration 

spectra analysed by Principal Component Analysis.  

 

 

Differentiation can have a strong impact on process performances, such as growth arrest or 

expression of particular metabolic pathways (Lindsey and Yeoman 1983). Therefore its 

proper monitoring so as to detect early changes in differentiated cell subpopulations is 

mandatory for subsequent control action under the PAT approach (Teixeira et al. 2009b). 

However, current approaches based on daily sampling fail to provide real-time information 
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as, for example, to detect the abrupt change in parenchyma and collenchyma cell 

concentration at 100 h in batch 1. Consequently, real-time monitoring approaches are 

desirable to subsequently develop advanced retro-control systems. The impact of cell 

differentiation on spectra was carried out using PCA which revealed the trajectory (Clavaud 

et al. 2013) of the three cultures. In general, the trajectory of the culture process goes from 

left to right. Batch 1 resulted in a compact group while batch 2 and 3 were more widely 

spread (Figure 4.4-6-D). The distance between batch 1 and batch 2 and 3 was likely caused 

by the effect of pH and DO control. Punctual differences in culture trajectories between batch 

2 and 3 were likely caused by differences in differentiated cell populations and their resulting 

culture media, which were adequately detected by NIR spectra.  

 

Calibration and in-line monitoring of cell differentiation 

 

In attempt to understand and monitor process heterogeneity, calibration models for the three 

main observed types of cells in cultures were performed. Characteristics of model 

performances are summarized in Table 4.4-4. The R2 is a parameter used to depict the 

capability of the model to explain cell concentration variability based on spectra variability 

and is usually used to also evaluate calibration linearity. A coefficient with values close to 

one indicates that the model is capable to relate spectra variability to concentration well, close 

to zero lack capability. Models achieved relatively high R2 values, particularly for 

collenchyma and sclerenchyma cells, demonstrating the feasibility of NIRS and multivariate 

analysis to measure differentiated cells within cultures in real-time manner. This fact is 

demonstrated by relatively high Q2Y values, particularly for collenchyma and sclerenchyma 

cells. The accuracy of models was characterized by low RMSECV values of approximately 

11, 7 and 6 % of REE for parenchyma, collenchyma and sclerenchyma cells respectively. 
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Table 4.4-4. Statistical analysis of calibration models for plant cell cultures. 

 
Models for particular differentiated cell type 

Parenchyma Collenchyma Sclerenchyma 

RMSECV (cells.mL-1) 

[104] 
2.15 1.11 0.55 

REE (± %) 12 7 6 

R2CV 0.76 0.92 0.97 

PLSR model structure 5 LV 5 LV 5 LV 

Q2Ycv (%) 77 91 94 

RMSECV: Root mean square error of cross-validation; REE: Relative error of estimation 

of cross-validation; R2CV:Correlation coefficient of cross-validation; QY2: Goodness of 

estimation of cross-validation.  

 

 

The models were then used to monitor the distribution of differentiated cell subpopulations 

in real-time by using the in situ probe as shown in the animation (Online Resource 1) within 

the three batch cultures as internal validation. The NIR calibration models were challenged 

differently since batch cultures were differently operated (pH and DO controlled for batch 

1). Moreover, cell differentiation dynamics was different for the three batch cultures. For 

example, while collenchyma cells concentration increased at the beginning of the culture for 

batch 1 and 2, a decrease was observed for batch 3 (Figure 4.4-7); on the other hand, 

sclerenchyma cell concentrations remained mainly low and constant for batch 2 and 3 while 

an increase was observed for batch 1. Calibrating in such different differentiation dynamics 

can also be perceived as an advantage since any confused correlation between differentiated 

cell concentrations is limited, leading to a more accurate model performance (Riley et al. 

1998).  

The estimations of models based on in situ captured NIR spectra matched measured 

concentrations for parenchyma, collenchyma and sclerenchyma cells throughout the course 

of the three batch cultures as shown in Figure 4.4-7. Major deviations of model estimations 

from actual concentrations were evident for collenchyma cells during batch 2 at the beginning 

of the culture. This could be explained by the fact that spectra from the beginning of batch 2 

were different from the majority of the calibration samples as suggested by PCA analysis 

(Figure 4.4-6-D).  
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Figure 4.4-7. Performance of models to monitor differentiated cells using in situ captured 

NIR spectra in real-time: Real-time estimation by models (lines) and off-line measured values 

(symbols) for the groups of ( , ) parenchyma cells, ( , ) collenchyma cells, and (  ,

) sclerenchyma cells. 

 

Cell differentiation dynamics can have strong effects on process performance. Parenchyma 

cells are usually reported as fast growing cells in suspension cultures while collenchyma cells 

may have enhanced resistance to shear stress due to their thickened primary walls. On the 

other hand, sclerenchyma cells have been closely related to enhanced alkaloid production 

(Hoekstra et al. 1990) though also related to cell viability reduction of cultures (Twumasi et 

al. 2009). For instance, the extension of sclerenchyma cells should be maintained at minimum 

if cell accumulation is desired (beginning of cultures), collenchyma cells favoured in shear 

stressing conditions (high density cultures requiring strong mixing) and sclerenchyma cells 

induced for producing alkaloids once high density be achieved.  

The calibration models developed could be used for monitoring cell differentiation dynamics 

firstly and then provide feedback control based on culture conditions changes such as 

addition of particular plant growth regulators (Twumasi et al. 2009). This scheme could 
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finally lead to establish PAT strategies on new enhanced processes based on plant suspension 

cultures of differentiated cells.   

 

4.4.1.2.5 Current issues and future challenges 

 

Based on current trends in biopharmaceutical industry, it seems likely that plant suspension 

culture will gain more importance as production platform. However, there are still several 

challenges to surpass for the successful establishment of production processes, particularly 

related to the heterogenic nature of plant cell proliferation in suspension cultures. The PAT 

initiative offers a frame for control of variability or heterogeneity based on real-time 

monitoring procedures and knowledge of the cell culture processes.   

Though there are plenty of reports on monitoring, particularly with focus on some substrates 

and by-products concentration, key parameters for plant suspension cultures remains 

unaddressed since the growth and metabolism of plant cells considerably differ from those 

of microbial and animal cells. For instance, the size and shape of cells and cell aggregates, 

subpopulations of cells in G0 phase, of cells with different production capacity in wild or 

polyclonal cultures, of cells with differentiated condition, among others.  

Overall, the potential of in situ NIRS for cell differentiation monitoring in real-time has been 

demonstrated. As far as it can be ascertained, this is the first report applying NIR 

spectroscopy using an in-situ probe for real-time measurement of cell heterogeneity in plant 

cell suspension cultures. Nonetheless, sources of heterogeneity are diverse in plant cell 

suspension culture-based processes and it seems likely that the number and nature of 

components analysed using in situ spectroscopy will significantly expand. This study 

encourages future studies to expand the monitoring capabilities of analyzers for real-time 

monitoring of heterogeneity in plant cell suspension cultures.  

 

4.4.1.2.6 Conclusions 

 

 

The feasibility of in situ monitoring of some plant suspension culture heterogeneity in 

bioreactors through NIR spectroscopy has been demonstrated. This affirmation is based on 

the generation of calibration models for parenchyma, collenchyma and sclerenchyma 

differentiated cells of Catharanthus roseus. Models yielded appropriate accuracy and 
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precision to estimate the concentration of differentiated cells during bioreactor cultures in 

real-time, which could provide meaningful information of physiological state of cells. These 

are encouraging results to follow up in PAT approaches to better understand and control 

biological medicine production by plant suspension cultures. 
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4.4.2 Conclusions of chapter IV 
 

The QbD-PAT initiative offers a frame for control of variability or heterogeneity based on 

real-time monitoring procedures and knowledge of the cell culture processes. Though there 

are plenty of reports on monitoring, particularly with focus on some substrates and by-

products concentration, innovative parameters such as those characterizing heterogeneity had 

not been yet addressed. In this chapter, the potential of in situ NIR monitoring for monitoring 

of cell culture heterogeneity has been shown to some extension.  

For mAb heterogeneity in CHO cell cultures, several regression strategies were used for 

generating calibration models of mAb CQA taking into account the nature of regression 

methods and the relationship between spectra and compounds concentration. Comparison of 

PLSR, LWR and SVR performance revealed that information of mAb heterogeneity 

contained in spectra is coded in a complex and mainly in a nonlinear way. Thus, common 

calibration approaches based on PLSR regression are likely to be not adapted for such a task. 

Real-time monitoring of glycosylation, in terms of high mannose isoforms, fucosylated, 

sialylated and galactosylated isoforms as well as non-glycosylated mAb, has been 

successfully performed by the novel use of Locally Weighted Regression (LWR) and Support 

Vector Regression (SVR) with relative error of predictions in the order of 10 %.  

Plant suspension cultures are highly heterogenic in nature. The feasibility of in situ 

monitoring of heterogeneity in term of cell differentiation has preliminary been 

demonstrated. Calibration models were generated for differentiated cells within cell 

aggregates in suspension cultures of C. roseus. Models yielded appropriate accuracy and 

precision to estimate the concentration of differentiated cells during bioreactor cultures in 

real-time. Since cell differentiation is likely related to antileukemic agent synthesis, its 

monitoring could provide meaningful information for process control.  

Overall, the potential of in situ NIRS for real-time monitoring of some heterogeneity in cell 

culture processes has been demonstrated. Nonetheless, sources of heterogeneity are diverse 

in cell culture-based processes and it seems likely that the number and nature of components 

analysed using in situ spectroscopy will significantly expand. This study encourages future 

studies to explore the monitoring capabilities of analyzers for real-time monitoring of 

heterogeneity within cell culture by the use of diverse chemometric tools.  
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5 GENERAL CONCLUSIONS AND PERSPECTIVES 
 

The aim of this thesis project has been to enhance the capabilities of in situ NIR spectroscopy 

for properly monitoring of cell cultures. It has been addressed by evaluation of diverse 

chemometric approaches. The main conclusions have been summarized in four sections 

according to major contributions of the thesis work.  

 

1. Analysis of plant cell suspension cultures for real-time monitoring.  

 

As plant cell suspension cultures had not yet been addressed for monitoring using in situ 

NIRS probes, the first objective was to develop and then monitor a biopharmaceutical cell 

culture process. Analysis of suspension cultures revealed that production of 

biopharmaceutics under this cell platform involves particular challenges that are not 

commonly addressed in other cell platforms, particularly related to the complex proliferation 

nature of plant cells.  

One particular challenge for the production of medicines using this cell platform is the 

different cell behavior under in vitro and in vivo conditions, which has limited the in vitro 

production of vincristine and vinblastine, first line chemotherapeutics, as their synthesis 

requires cell differentiation. Therefore, cell differentiation in suspension cultures was 

induced by changes in operating conditions, seeking different titers of the chemotherapeutics. 

Cell differentiation was observed within cell aggregates and seemed likely related to 

differentiated capacity of cell cultures for vincristine and vinblastine production.   

This work has provided important clues into the comprehension of in vitro culture 

performance for metabolites production requiring in vivo cell differentiation. They 

demonstrated the utility of taking into account cell differentiation for the further development 

of novel advanced processes of differentiated cell suspension cultures for producing valuable 

molecules, including biological medicines such as VC and VB.  
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Perspectives 

 

This contribution could go further by a deeper identification of the degree of cell 

differentiation by using biochemical markers, preferably in synchronous cultures for a deeper 

understanding of the cell differentiation phenomena. Moreover, the relationship of the cell 

differentiation progression with the expression of key enzymes for vincristine and vinblastine 

synthesis, as well as the effect of the micro-environment within cell aggregates of 

differentiated cells, should be addressed for the proper development of advanced 

differentiated cell cultures of plant cell cultures.   

 

2. Evaluation of current monitoring approaches based on linear PLSR regressions 

 

Several studies have shown the potential of NIR spectroscopy and multivariate analysis as a 

promising tool for monitoring of cell cultures processes. However, such complex processes 

have only been addressed by the use of linear regression methods for building calibration 

models for estimating chemical or biochemical variables based on NIR spectra. Therefore, 

the pertinence of current linear approaches for calibrating in cell culture-based processes was 

evaluated.  

Cell culture processes have been shown challenging for monitoring by in situ NIR 

spectroscopy, particularly due to nonlinear relationships between spectra and concentration 

of particular compounds. Consequently, the widely used PLSR method was incapable of 

properly relating spectra with compound concentrations, indicating that such a widely used 

regression methods is not always appropriate for the monitoring of animal cell culture 

processes.  

Indeed, it has been revealed that the relationship between spectra and concentration changes 

due to the strong dynamic nature of cell culture processes. Therefore, an approach which 

could consider this variability was used. Locally Weighted Regression-LWR was considered 

by the fact that it is a sample-based regression which firstly focus on similarity of calibration 

samples, related to cell culture progression, and then perform regression.  

The novel use of the LWR method was shown to overcome PLSR limitations, which led to 

more accurate predictions of culture compound concentrations. The break of global 
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nonlinearity into several local linear frames was shown to be useful, providing more accurate 

and precise prediction using the same spectra. However, there were still nonlinearity that was 

not caused by cell culture progression where even the local approach failed. This fact 

suggested that there could be inherent nonlinearity relationships between spectra and 

compound concentration.  

 

Perspectives 

 

Overall, the results highlighted the fact that in situ NIR spectroscopy could have a broader 

potential as a PAT tool provided that the effect of culture dynamics and nonlinearity be 

considered. Therefore, new approaches based on different instrumentation modes (probe 

nature, different pathlengths for particular compounds) and chemometric tools (multivariate 

analysis) should be explored seeking pertinent monitoring of new key parameters providing 

meaningful information for advanced cell culture control protocols. 

 

3. Evaluation of new nonlinear regression methods for the generation of monitoring 

models 

 

As the vulnerability of PLSR models for monitoring of cell cultures has been shown due to 

nonlinear relationships between spectra and concentrations of substrates, products and viable 

cells, the use nonlinear regression methods for the generation of calibration models had been 

addressed seeking enhancement of predictive power compared with linear approaches 

currently used in biopharmaceutic industry.   

Supported Vector Regression-SVR and Artificial Neural Network Regression-ANNR, 

sample-based and variable-based nonlinear methods respectively, were evaluated and 

compared to PLSR. The novel use of SVR and ANNR showed to be a promising alternative 

to maximize the potential of NIR spectroscopy as monitoring tool. Both regression models 

over performed PLSR in normal operating conditions. It was SVR which is likely the best 

option since it better managed inter-batch heterogeneity (more accurate and precise 

predictions) due to their more specificity capacity. This enhanced performance could be 

explained by the fact that SVR is a nonlinear sample-based regression method, which was 
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particularly useful for proper inter-batch heterogeneity management. However, this nature 

was also counterproductive in particular cases, as for example changes in the culture media 

or process operation under abnormal operating conditions, where ANNR is likely the most 

robust method since it globally generalized the process dynamics.  

 

Perspectives 

 

These results provided a wide frame to follow up new chemometric strategies which 

enhanced the capacity of in situ analyzers so that effective control approaches could 

eventually be implemented to guarantee quality of antibodies. In future investigations, it 

might be possible to use more chemometric tools such as local approaches of SVR and 

ANNR methods as well as more sophisticated versions them. Moreover, the use of such 

advanced monitoring procedures could allow monitoring of key compound concentration 

with high accuracy and precision so that metabolic rates and their relationships be also 

monitored in real time manner. This information could then be used for better 

characterization of the cell physiological state. Then, control strategies could be launched 

seeking maintenance of a particular cell physiological state enhancing cell culture processes 

yield and productivity.  

 

 

4. Monitoring of innovative parameters for a better understanding of cell cultures 

processes heterogeneity 

 

Currently, only some basic CPP are systematically monitored (pH, temperature, among 

others) by in-line process analyzers. However, cell culture processes also require monitoring 

of CPP and CQA with biochemical and biological nature. Most of the work has been focused 

to some few biochemical compounds such as glucose, lactate and glutamine concentration 

monitoring, while innovative parameters characterizing heterogeneity, such as mAb 

glycosylation or plant cell differentiation, had not been yet addressed. Consequently, 

monitoring tools must be updated considering the needs of cell cultures processes. Therefore, 
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the feasibility of in situ NIR calibration models for monitoring such innovative parameter 

has been explored.   

 

Plant suspension cultures are highly heterogenic in nature and it strongly determined the 

process performance. The feasibility of in situ monitoring of some plant suspension culture 

heterogeneity in bioreactors through NIR spectroscopy has been preliminary demonstrated. 

This affirmation is based on the generation of calibration models for parenchyma, 

collenchyma and sclerenchyma differentiated cells of Catharanthus roseus. Models yielded 

appropriate accuracy and precision to estimate the concentration of differentiated cells during 

bioreactor cultures in real-time, which could provide meaningful information of 

physiological state of cells.  

 

Perspectives 

 

Plant cell suspension culture is gaining interest as biopharmaceutical production 

platform. However, plant cell cultures are highly heterogenic and there are still many 

parameters required for the adoption of QbD in suspension cultures, particularly due 

to particular plant cells proliferation nature and metabolism. There is then abundant 

room for further progress, as for example for monitoring cell aggregates size, the 

extension of polyclonal heterogeneity and of cells in G0 phase, intra- or extracellular 

product concentration, among others.  

 

Monitoring of mAb heterogeneity within CHO cell cultures has been a complex challenge 

for the implementation of real-time retro control systems since current approaches to 

elucidate mAb variants require sampling and labour-intensive efforts. Thus, glycosylation 

analysis is often performed at the end of the culture process, limiting real-time control 

strategies. Therefore, the development of in situ spectroscopic procedures for real-time 

monitoring of mAb heterogeneity is highly desired so that control strategies could be 

established once and for all. Results have proven that this can be possible provided proper 

generation of calibration methods based on in situ NIR spectroscopy. Indeed, common 

calibration approaches based on PLSR regression did not performed well as we expected. 
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While it has needed to use a combination of models based on LWR and SVR methods. Then, 

real-time monitoring of glycosylation, in terms of high mannose isoforms, fucosylated, 

sialylated and galactosylated isoforms as well as non-glycosylated mAb, was successfully 

performed with relative error of predictions in the order of 10 %.  

 

Perspectives 

 

This study provided important insights into new PAT applications through NIRS. It 

suggested that monitoring of innovative parameters characterizing cell culture 

processes heterogeneity is possible provided regression methods and chemometrics 

tools are properly employed. For instance, for monitoring more mAb properties, such 

as mAb coupling with risky host cell proteins, mAb aggregation, mAb reduction, 

among others. 

 

 

 

------------------------------------------ 

 

Globally, this work has contributed for expanding the capabilities of in situ NIR spectroscopy 

for the monitoring of classic CPP in a more precise way, new innovative CPP such as cell 

differentiation in plant suspension cultures and innovative CQA such as mAb glycosylation 

profiles linked to mAb clinical characteristics in CHO cells cultures. This contribution is only 

a little part of an exciting and necessary investigation for the development of new 

spectroscopic approaches leading to the development of new optimized biopharmaceutic 

processes with automated control based on knowledge.  
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Enhanced method to monitor cell cultures by dielectric spectroscopy 

 

Daniel Arturo Zavala-Ortiz1,2, Bruno Ebel1*, Meng-Yao Li1, Maria Guadalupe 

Aguilar-Uscanga2, Javier Gomez-Rodriguez2, Dulce Maria Barradas-Dermitz2, 

Patricia Margaret Hayward-Jones2, Annie Marc1, Emmanuel Guedon1 

 

1Laboratoire Réactions et Génie des Procédés, CNRS-Université de 

Lorraine, Vandœuvre-lès-Nancy, France 

 2Laboratorio de Bioingeniería, Instituto Tecnológico de Veracruz, México 

*bruno.ebel@univ-lorraine.fr 

 

Background  

 

Physiological state of cells has a strong impact on post-translational modifications of 

biopharmaceuticals. Therefore, its accurate monitoring and control is mandatory to guarantee 

medicines properties and safety of patients. The specific cell growth rate (μ) may globally be 

used to depict the cells state during cultures. Using in-situ dielectric spectroscopy, μ can be 

used to control the feeding strategy of cell cultures so that glycosylation quality of 

monoclonal antibody (mAb) remained under proper levels [1]. However, the widely used 

simple linear regression (SLR) of measured permittivity to real-time estimate the viable cell 

density (VCD) and then calculate μ, can led to a lack of accuracy and precision. To avoid 

limitations, this study aimed to evaluate the novel implementation of Supported Vector 

Regression (SVR) on dielectrics.       

 

Materials and methods  

 

Capacitance spectra were collected every 12 min by using Biomass Evo 200 during several 

mAb producing CHO cells cultures in bioreactors (2L). Off-line measurements of VCD were 

performed using the Trypan Blue exclusion method (ViCell, Beckman Coulter). Then VCD 

values were related to measured permittivities by both regression methods (SLR and SVR) 

to build prediction models. The SLR model was generated using the linear equation: 
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VCD =  a x (permittivity1000 kHz) + b 
where a and b are fitting coefficients 

 

The SVR model was generated using an -support vector regression with a Gaussian radial 

basis function kernel (PLS_Toolbox® 8.2.1, Eigenvector Research). Then, the in-line 

estimated VCD was used to calculate μ values in real-time, and compared them to off-line 

values for evaluation:  

μ =  
∆ 𝐿𝑛 (𝑉𝐶𝐷)

∆𝑡
 

Results  

 

The SLR uses a variable (permittivity) space to perform regression. A consideration for such 

model is that cell properties, as well as relation of VCD to permittivity spectra, remain 

constant. This is not the case during the various phases of culture process. Consequently, the 

SLR cannot well relate cell subpopulations displaying different dielectric properties, mainly 

during late-stationary and dead phases. On the contrary, the SVR method, based on a sample 

space, demonstrated a remarkable robustness for tracking cells having different dielectric 

properties (Fig. 1-a). SVR creates a sample distribution based on dielectric properties before 

generating the regression equation, allowing considering variability of cell dielectric 

properties within samples. Then, both SLR and SVR models were used to in-line calculate 

μ. The SVR method leads to more accurate and stable calculations of μ during cultures (Fig. 

1-b). 
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Figure 1. Use of SVR and SLR models to monitor (a) VCD in fed-harvest culture and (b) μ 

in batch culture. 
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Conclusions  

On the basis of results, the SVR method must be favoured in order to improve the monitoring 

of animal cell culture processes by dielectric spectroscopy, especially when the composition 

of the culture medium changes significantly or when cells are subject to strong physiological 

changes. SVR also appears promising to develop new approaches taking into account the 

different dielectric subpopulations of cells rather than assuming a homogeneous dielectric 

population within cell cultures in bioreactor [2]. 
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7.5 Transversal formation during the PhD 
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Short term internship in the laboratory of vegetal tissues, Insitute of Ecology, 
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Catharanthus roseus.  

In the frame of the joint PhD between Université de Lorraine, and TecNM/Instituto 

Tecnológico de Veracruz, there were three exchanges between both institutions 

during the doctorate program. 22 months were spent in Université de Lorraine and 

26 months in TecNM/Instituto Tecnológico de Veracruz.  

Teaching: 

o Guest Lecturer:  Fundamentals of plant cell cultures, ITVer (Spring 2016, 

20 h) 

o Junior Lecturer: Fundamentals of Instrumental analysis, ITVer (February – 

June 2016; 50 h) 

Doctoral school courses (110 h in total): 

1. Français langue étrangère (CEFR B1 level) – Spring 2017 

2. Culture de l’intégrité scientifique – Autumn 2019 

3. Data science'- Initiation à l'analyse multivariée de données – Spring 2019.  

4. Molecules, medicaments, matériaux: Elaboration, synthèse et 

characterization – Spring 2019.  

5. Maîtriser les situations interculturelles : les comprendre, gérer les 

interactions au sein d’une équipe, prendre conscience des présupposés 

scientifiques de sa culture – Spring 2018. 

6. Module Pole A2F: Techniques de caractérisation et d’analyses – Spring 

2018. 

7. Valorisation non alimentaire des productions vegetales – Spring 2018. 
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Industrial visits: 

1. Ames research center, NASA, California U.S.A. - Autum 2017.  

2. Grupo Bático, Veracruz, Mexico – Summer 2016. 

3. Badische Anilin- & Soda-Fabrik (BASF Beauty), Pulnoy, France – Spring 

2019 

4. LUXINNOVATION, Esch sur Belval, Luxembourg – Spring 2019.  

5. Novartis, Bâle, Switzerland – Summer 2019.  

 

Awards: 

• 1st place in the Evento Nacional Estudiantil de Innovación Tecnológica-

ENEIT (National Student Technological Innovation Event, Mexico) 2017 in 

category “Industrial process design and financial proposal”  

• 1st place in the Evento Nacional Estudiantil de Innovación Tecnológica-

ENEIT (National Student Technological Innovation Event, Mexico) 2017 as 

best industrial project proposal. 

• Laureate of the Eiffel Excellence Scholarship Programme 2018 by the 

French ministère de l'europe et des affaires étrangères 

• 1st prize on poster contest during the 26th meeting of the European Society 

of Animal Cell Technology, Copenhagen, Denmark, 2019.  

• Best thesis presentation of the Graduate School Unidad de Investigación y 

Desarrollo en Alimentos (UNIDA), January 2020.  
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Other: 

o Participation in the Evento Nacional Estudiantil de Innovación Tecnológica 

-ENEIT (National Contest of Innovation), Veracruz, Veracruz & Pachuca, 

Hidalgo, Mexico.  2017 – 2018. 

o Participation in the design and redaction of scientific proposals: ECOS 

Nord, Retos Nacionales (CONACyT).  

o Participation in the design and redaction of two Mexican patent applications 

in 2017 and 2019.  
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